ong fibonacci) {

2

searchSequence &

index0fFibonaccl =
* .urrentIndex = 2;

NN
oY codemanship

el

o "or e ot - sequence.get(currentindes - &) » |
Sfslly & f == fibonacci)
% ”79;}:6. 7"6,.,’001‘ Y 2 dosOLl s lenmaan i ————— bt
s -
e /;
_’%,,Ca/ % do"e giately, we run the tests to make sure Hothing + B
s / =)
b/oq, o}; 9, 5 N mere are still issues that might need EE L LR S T -
C yo) low-hanging fruit.
ode 6fe gINg
Va (. /’ 63 07@’@,.
a"a/o stop fO/' .
DA = ad

101 TDD Tips

© Codemanship Ltd 2016

101 TDDTips

MAM UKAy3a @2dzQft fSFENYy 2y GKS [/ 2
First published on the @codemanship Twitter feed.

Visitwww.codemanship.corfor more details about TDD training and coaching, and our exclusive 200
page TDD book.

© Codemanship Ltd 2016

http://www.codemanship.com/

101 TDDXips

About The Author

Jason Gaonan is a software developer, trainer and coach

based in London. A TDD practitioner since before it had a
YIYSE KSQa KSftLISR (K2dzal yRa 27
essential discipline through his compa@gdemanship

| SQa GKS ¥F2dzy RS NliogaFSoftw&& 2 NA JA Y |
Craftsmanship 20xxconference, an activist for software

i developer apprenticeships, a patron of the Bletchley Park

Trust,a onetime-only West End produces, failed

| physicist and a keen amateur musiciais twelve fans

know him asApes Vith Hobbies

You can follow him on Twitter (@jasongorman), or enaaibn.gorman@codemanship.com

About Codemanship

Founded in 2009, Codemanship provides training,
coaching and consulting in the practical software
disciplines that enable organisationsdostain the pace

of digital innovation. Based in London, Codemanship has trained and guided teams in TDD,
refactoring, software design, Continuous Integration and Continuous Delivery, and Agile Software
Development for a wide range of clients including B2C, UBS, Waters plc, Ordnance Survey,
salesforce.com, Electronic Arts, John Lewis, Redgate and Sky.

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #1: Refactoring to parameterised tests is a great way to reduce
duplication while generalisingthe tests so they read more like a specification

@RunwWith (JUnitParamsRunner.class)
public class FibonacciTests {

Te

Parameters({"0,0","1,1"})

public void startsWithZeroAndOne (int index, int expected) {
assertEquals(expected, getFibonacciNumber (index)):

}

@Test

@Parameters({"2,1", "3,2", "5,5"})

public void thirdNumberOnIsSumOfPreviousTwo (int index, int expected) {
assertEquals(expected, getFibonacciNumber (index)):

}

@Test (expected=IllegalArgumentException.class)

public void indexMustBePositivelInteger() {
getFibonacciNumber (-1) ;

}

private int getFibonacciNumber (int index) {
return new Fibonacci () .getNumber (index) ;

}

codemanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #2: Using variables and constants can make the meaning of test data
values clearer

@Test (expected=MaximumExceededException.class)
public void maximumDebitAmountCannotBeExceeded () {
BankAccount account = new BankAccount():;
account.credit (1000);
account.debit (600.01);

@Test (expected=MaximumExceededException.class)
public void maximumDebitAmountCannotBeExceeded () {
BankAccount account = new BankAccount():
account.credit (1000);
final double maxDebitAmount = 600.00;
account.debit (maxDebitAmount + 0.01);

N

% codemanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #3: It’s actually okay to have getters for tests, just as long as they’re
not exposed to the client source code

@Test

public void rewardingMemberAddsPointsToTotal() {
Member member = new Member():
member.reward(10) ;

assertEquals (10, member.getRewardPoints()):

public class Member implements Rewardable {
private int rewardPoints;
@override

public void reward(int points) {
this.rewardPoints += points;

}

public int getRewardPoints() {
return rewardPoints;

}

public class Library ({
private List<Copyable> titles;

public void donate (Copyable title, Rewardable donor) {
titles.add(title);
donor.reward(10) ;

codemanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #4: Running customer tests through a tag cloud generator can
provide inspiration when looking for names for classes, methods, variables
etc

Given a movie title that isn't in the library,

When a member donates their copy

Then the title is added to the library,

And a default loan copy is added to the title,

And an email alert is sent to all members who expressed an interest in matching titles informing them title is
available to borrow,

And the donor is awarded 10 reward points

default member
alertEwallablematchmg

rewar borrow
po.maddedcopy

et |t] @,

arugeibrary >

informingmovie

members [+ Codemanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #5: You don’t necessarily need a mocking framework to create mock
objects

public class LibraryTests {
private boolean registerCopyInvoked;

@Test
public void tellsTitleToRegisterCopy() {
registerCopyInvoked = false;
Member member = new Member () {public void awardPriorityPoints(int points) {}
}:
Title title = new Title() {
public void registerCopy () {
registerCopyInvoked = true;
}
bi
new Library().donate(title, member);
assertTrue("title.registerCopy() was not invoked", registerCopyInvoked):

codemaoanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #6: The way to go faster is to go cleaner. When the schedule’s
slipping, consider taking smaller steps

@Test

public void squareRootTest () {

assertEquals(3, Maths.sqrt(9), 0.00001);
}

@Test |

@Parameters ({"O", win wgn mgu "0.25"})

public void squareOfSquareRootIsSameAsInput (double input) {
double sgrt = Maths.sqrt(input);
assertEquals(input, sqrt * sgrt, 0.00001);

codemanship

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #7: Before you make it pass, run the test to make sure the assertion
fails when the result is wrong, so you know it’s a good test

f# Package Explorer gv JUnit 2 & oo élRl| QB ® EYy v=0
Finished after 0.033 seconds

Runs: 1/1 8 Errors: 0 B Failures: 1
|
e/ donatedTitlelsAddedToTheLibrary [Runner: JUnit 4] (0.001 s)|

1-..'!

= Failure Trace oF| ¢
%1 java.lang.AssertionError:
Expected: iterable containing [<VideoTitle@77a567e1>]
but: No item matched: <VideoTitle@77a567e1>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

at VideolibraryTests.donatedTitlelsAddedToThelLibrary(VideoLibraryTests.java:14)

FA L doenl o
BT

g }vj codemanship

]
N Sy

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #8: Customer Tests Passed offers a more objective measure of
progress than ‘tasks completed’ or ‘layers coded’

Progress %

60%
100%
100%
100%
100%

0%
0%
0%
100%
100%

66%

Total Tests

HNNNB B NNLBWV

Passed

HNOOOMRNNDBW

Feature Progress % ul Services Domain DB
Donate a DVD 70% 0% 80% 100% 100%
Borrow a DVD 75% 0% 100% 100% 100%
Join the library 65% 0% 60% 100% 100%
Refer a friend 75% 0% 100% 100% 100%
Review a movie 75% 0% 100% 100% 100%
Search for titles 50% 0% Fleaturéw' o
Report DVD lost or damaged 50% 0% R
Reverse a DVD 50% 0%
Spend reward points 75% 0% 1 Bc?rrow a' ol
Transfer reward points 75% 0% 1 Join the library
Refer a friend
Total progress 66% Review 2 mc_w'e
Search for titles
Report DVD lost or damaged
Feature Progress % Analysk Deslgn Reserve a DVD
Bovtea BVD 5% 100% A Spend reward points
Borrow a DVD 75% 100% 1 Transfer reward points
Jointhe library 68% 100% 1
Refer a friend 70% 100% 1
Review a movie 50% 100% 1 Total progress
Search for titles 50% 100% 100% 0% 0%
Report DVD lost or damaged 63% 100% 100% 50% 0%
Reverse a DVD 63% 100% 100% 50% 0%
Spend reward points 75% 100% 100% 100% 0%
Transfer reward points 75% 100% 100% 100% 0%
Total progress 66%

© Codemanship Ltd 2016

101 TDDTips

TDD Tip #9: Parameterised unit tests can be reused in other kinds of test
fixtures that can be run separately

@rRunWith (JUnitParamsRunner.class)
public class MathsTests ({

@Test

@Parameters ({non’ "1", nqu' "9"1 110.25"})

public void squareOfSquareRootIsSameAsInput (double input) {
double sgrt = Maths.sqgrt(input);
assertEquals(input, sqrt * sqgrt, 0.00001);

@rRunwWith (JUnitParamsRunner.class)
public class ExhaustiveMathsTests {

@Test
@Parameters (method="inputs")
public void testl000SquareRoots (double input) {

new MathsTests () .squareCfSquareRootIsSameAsInput (input);

}

private Object[] inputs () {
return DoubleStream
.iterate(l, n -=> n + 0.1)

.1imit (1000)
.mapToObj (x -> X)
.toArray();
}
}
;’7: @5 codemanship
§ Nl

© Codemanship Ltd 2016

101 TDDXips

TDD Tip #10: When the implementation for a requirement or rule is obvious,
you don’t need to triangulate through multiple examples

@Test

public void sumOfTwoNumbers() {

assertEquals(4, Maths.sum(2,2), 0);
}

public class Maths {

public static double sum(double i, double j) {
return i + j;

}

W&Hﬁﬂq ﬁ

ov | codemanship

© Codemanship Ltd 2016

101 TDDXips

© Codemanship Ltd 2016

