April 8, 2015

...Learn TDD with Codemanship

Reality-driven Development - Creating Software For Real Users That Solve Real Problems In the Real World

It's a known fact that software development practices cannot be adopted until they have a pithy name to identify the brand.

Hence it is that, even though people routinely acknowledge that it would be a good idea for development projects to connect with reality, very few actually do because there's no brand name for connecting your development efforts with reality.

Until now...

Reality-driven Development is a set of principles and practices aimed at connecting development teams to the underlying reality of their efforts so that they can create software that works in the real world.

RDD doesn't replace any of your existing practices. In some cases, it can short-circuit them, though.

Take requirements analysis, for example: the RDD approach compels us to immerse ourselves in the problem in a way traditional approaches just can't.

Instead of sitting in meeting rooms talking about the problem with customers, we go out to where the problem exists and see and experience it for ourselves. If we're tasked with creating a system for call centre operatives to use, we spend time in the call centre, we observe what call centre workers do - pertinent to the context of the system - and most importantly, we have a go at doing what the call centre workers do.

It never ceases to amaze me how profound an effect this can have on the collaboration between developers and their customers. Months of talking can be compressed into a day or two of real-world experience, with all that tacit knowledge communicated in the only way that tacit knowledge can be. Requirements discussions take on a whole different flavour when both parties have a practical, first-hand appreciation of what they're talking about.

Put the shoe on the other foot (and that's really what this practice is designed to do): imagine your customer is tasked with designing software development tools, based entirely on an understanding they've built about how we develop software purely based on our description of the problem. How confident are you that we'd communicate it effectively? How confident are you that their solutions would work on real software projects? You would expect someone designing dev tools to have been a developer at some point. Right? So what makes us think someone who's never worked in a call centre will be successful at writing call centre software? (And if you really want to see some pissed off end users, spend an hour in a call centre.)

So, that's the first practice in Reality-driven Development: Real-world Immersion.

We still do the other stuff - though we may do it faster and more effectively. We still gather user stories as placeholders for planning and executing our work.. We still agree executable acceptance tests. We still present it to the customer when we want feedback. We still iterate our designs. But all of these activities are now underpinned with a much more solid and practical shared understanding of what it is we're actually talking about. If you knew just how much of a difference this can make, it would be the default practice everywhere.

Just exploring the problem space in a practical, first-hand way can bridge the communication gap in ways that none of our existing practices can. But problem spaces have to be bounded, because the real world is effectively infinite.

The second key practice in Reality-driven Development is to set ourselves meaningful Real-world Goals: that is, goals that are defined in and tested in the real world, outside of the software we build.

Observe a problem in the real world. For example, in our real-world call centre, we observe that operatives are effectively chained to their desks, struggling to take regular comfort breaks, and struggling to get away at the end of a shift. We set ourselves the goal of every call centre worker getting at least one 15-minute break every 2 hours, and to work a maximum of 15 minute's unplanned overtime at the end of a day. This goal has nothing to do with software. We may decide to build a feature in the software they use that manages breaks and working hours, and diverts calls that are coming in just before their break is due. It would be the software equivalent of when the cashier at the supermarket checkout puts up one of those little signs to dissuade shoppers from joining their queue when they're about to knock-off.

Real-world Goals tend to have a different flavour to management-imposed goals. This is to be expected. If you watch any of those "Back to the floor" type TV shows, where bosses pose as front-line workers in their own businesses, it very often the case that the boss doesn't know how things really work, and what the real operational problems are. This raises natural cultural barriers and issues of trust. Management must trust their staff to drive development and determine how much of the IT budget gets spent. This is probably why almost no organisation does it this way. But the fact remains that, if you want to address real-world problems, you have to take your cues from reality.

Important, too, is the need to strike a balance in your Real-world Goals. While we've long had practices for discovering and defining business goals for our software, they tend to suffer from a rather naïve 1-dimensional approach. Most analysts seek out financial goals for software and systems - to cut costs, or increase sales, and so on - without looking beyond that to the wider effect the software can have. A classic example is music streaming: while businesses like Spotify make a great value proposition for listeners, and for major labels and artists with big back catalogues, arguably they've completely overlooked 99.9% of small and up-and-coming artists, as well as writers, producers and other key stakeholders. A supermarket has to factor in the needs of suppliers, or their suppliers go out of business. Spotify has failed to consider the needs of the majority of musicians, choosing to focus on one part of the equation at the expense of the other. This is not a sustainable model. Like all complex systems, dynamic equilibrium is usually the only viable long-term solution. Fail to take into account key variables, and the system tips over. In the real world, few problems are so simple as to only require us to consider one set of stakeholders.

In our call centre example, we must ask ourselves about the effect of our "guaranteed break" feature on the business itself, on its end customers, and anyone else who might be effected by it. Maybe workers get their breaks, but not withut dropping calls. Or without a drop in sales. All of these perspectives need to be looked at and addressed, even if by addressing it we end up knowingly impacting people in a negative way. Perhaps we can find some other way to compensate them. But at least we're aware.

The third leg of the RDD table - the one that gives it the necessary balance - is Real-world Testing.

Software testing has traditionally been a standalone affair. It's vanishingly rare to see software tested in context. Typically, we test it to see if it conforms to the specification. We might deploy it into a dedicated testing environment, but that environment usually bears little resemblance to the real-world situations in which the software will be used. For that, we release the software into production and cross our fingers. This, as we all know, pisses users off no end, and rapidly eats away at the goodwill we rely on to work together.

Software development does have mechanisms that go back decades for testing in the real world. Alpha and Beta testing, for example, are pretty much exactly that. The problem with that kind of small, controlled release testing is that it usually doesn't have clear goals, and lacks focus as a result. All we're really doing is throwing the software out there to some early adopters and saying "here, waddaya think?" It's missing a key ingredient - real-world testing requires real-world tests.

Going back to our Real-world Goals, in a totally test-driven approach, where every requirement or goal is defined with concrete examples that can become executable tests, we're better off deploying new versions of the software into a real-world(-ish) testing environment that we can control completely, where we can simulate real-world test scenarios in a repeatable and risk-free fashion, as often as we like.

A call centre scenario like "Janet hasn't taken a break for 1 hour and 57 minutes, there are 3 customers waiting in the queue, they should all be diverted to other operators so Janet can take a 15-minute break. None of the calls should be dropped" can be simulated in what we call a Model Office - a recreation of all or part of the call centre, into which multiple systems under development may be deployed for testing and other purposes.

Our call centre model office simulates the real environment faithfully enough to get meaningful feedback from trying out software in it, and should allow us to trigger scenarios like this over and over again. In particular, model offices enable us to exercise the software in rare edge cases and under unusually high peak loads that Alpha and Beta testing are less likely to throw up. (e.g., what happens if everyone is due a break within the next 5 minutes?)

Unless you're working on flight systems for fighter aircraft or control systems for nuclear power stations, it doesn't cost much to set up a testing environment like this, and the feedback you can get is worth far more.

The final leg of the RDD table is Real-world Iterating.

So we immerse ourselves in the problem, find and agree real-world goals and test our solutions in a controlled simulation of the real world. None of this, even taken together with existing practices like ATDD and Real Options, guarantees that we'll solve the problem - certainly not first time.

Iterating is, in practice, the core requirements discipline of Agile Software Development. But too many Agile teams iterate blindly, making the mistake of believing that the requirements they've been given are the real goals of the software. If they weren't elucidated from a real understanding of the real problem in the real world, then they very probably aren't the real goals. More likely, what teams are iterating towards is a specification for a solution to a problem they don't understand.

The Agile Manifesto asks us to value working software over comprehensive documentation. Realty-driven Development widens the context of "working software" to mean "software that testably solves the user's problem", as observed in the real world. And we iterate towards that.

Hence, we ask not "does the guaranteed break feature work as agreed?", but "do operatives get their guaranteed breaks, without dropping sales calls?" We're not done until they do.

This is not to say that we don't agree executable feature acceptance tests. Whether or not the software behaves as we agreed is the quality gate we use to decide if it's worth deploying into the Model Office at all. The software must jump the "it passes all our functional tests" gate before we try it on the "but will it really work, in the real world?" gate. Model Office testing is more complex and more expensive, and ties up our customers. Don't do it until you're confident you've got something worth testing in it.

And finally, Real-world Testing wouldn't be complete unless we actually, really tested the software in the real real world. At the point of actual deployment into a production environment, we can have reasonably high confidence that what we're putting in front of end users is going to work. But that confidence must not spill over into arrogance. There may well be details we overlooked. There always are. So we must closely observe the real software in real use by real people in the real world, to see what lessons we can learn.

So there you have it: Reality-driven Development

1. Real-world Immersion
2. Real-world Goals
3. Real-world Testing
4. Real-world Iterating


...or "IGTI", for short.



Posted 2 years, 10 months ago on April 8, 2015