codemanship

£

Jason Gorman

This edition first published 016
Codemanship Limited
www.codemanship.com

All rights reserved

© Jason Gormarf016

The right of Jason Gorman to be identified as the author of this work has
been asserted in accordance with Section 77 of the CgipyrDesigns

and Patents Act 1988. No part of this publication may be copied,
reproduced, stored in a retrieval system, or transmitted, in any form

by any means without the prior permission of the publisher, nor be
otherwise circulated in any form ofrudling or cover other than that in
which it is published and without a similar condition being imposed on
the subsequent purchaser.

Printed in Great Britain

CODEMANSHIP | TDD |

ABOUT THE AUTHOR

developer apprenticeships, a patron of the Bletchley Park Taust,

Jason Gorman is a software
developer, trainer and coach based in
London. A TDDpractitioner since
0SF2NBE AG KIFR |
thousands of developers to learn this
essential discipline through his
company Codemanship | SQa
founder of the original international
Software Craftsmanship 20xxx
conference, an activist for softwar

one-time-only West End produces failed physicistand a keen
amateur musiciarHis twelve fans know him #gpes With Hobbies

You can follow him on Twitter (@jasongorman), or emalil

jason.gorman@codemanship.com

ABOUT CODEMANSHIP

Founded in 2009, Codemanship
provides training, coaching and
consulting in the practical software
disciplines that enable organisations

codemanship

to sustain the pace of digital
innovation. Based in London,

Codemanship hatrained and guided
teams in TDD, refactoring, software design, Continuous Integration
and Continuous Delivery, and Agile Software Development for a
wide range of clients including the BBC, UBS, Waters plc, Ordnance
Survey, salesforce.com, Electronic Adehn Lewis, Redgate and

Sky.

yl

You can find out more about Codemanship training and coaching at

www.codemanship.com

CODEMANSHIP | TDB |

REVIEWERS

Will Price
Mark Withall
Phil Proom
Jon Barber
Erik De Bonte
Antony Gorman
llya Agoshkov

Francois RenauBhilippon

CODEMANSHIP | TDD |

CONENTS

Before We Begin.......coooovveeiiiiiiiiieee e 9
WhY DO TDD2.....cco oot 11
Building the Right Thing...........ccoooiiiiii s 11
Keeping the Design Simple.........ccooiiiiiiiiiiiieieee 12
t NPRdzOAYy3 / 2RS ¢KI.0.QA&..9L.4A® ¢2
Making Sure the Software Always Watks..................... 13
Sustaining the Pace of Development...........ccccceeveeeeeees 13
Reliability vs. Productivity.............ccoovvviiiiiiieniiiiiiiiinnnnn. 13
WHhat is TDD2.... oo eean 17
HOW TO TDD ..ot 18
The Golden RULE.........oviiiiiee e 29
TestDriven Design vs. Desiffitiven Testing................... 31
Start With the QUESTION.........oveiviieeiiiceceee e, 33
TeSt YOUI TESIS ...t 37
FIuent ASSErtiONS.......ccooeeiiiiiiiiiiiiieee et 40
One Reason TO Fall......ccccevvvviieiiiiiiieeeiiiinnnn . 43
Tests Should Be S#Ekplanatory..........cc..ccoeviiiiiiienenns 46
{LISIF1Ay3d GKS [/ dza.d.2Y.SNRAS5I | y3
TranguIAtiNg..........cviei i 55
Triangulation Patterns.........cccoooovviiiiiciiee e, 6l
Obvious Implementations & TDDD S L.NA. &............... 62
Refactoring.......cccocieeiiiiiiiiieeei e 64
Design PrinCiples..........oi i 81
SIMPIE DESIGN.....coiieiiiie e 81

CODEMANSHIP | TDD |

14.

15.
16.

17.

CSEET 5.2y Q0 B e, 83

Single ReSPONSIDIILY.uiiiiieieiiiieiie e 87
Swappability & Dependency Injection..............ccccceeees 91
ClientSpecific Interfaces............coevvvviiiiiiieeeiiiiiiieeeee 93
Polymorphism & Contract TScevviiiriieeeeeriiinnnnn. 97
Test DoUBIES.........ccovvvii e 102
SHUDS e 103
MOCK ODBJECTS.evviiiiieie e 107
DUMMIES. ..ot ee e e e 111
Whose Interface IS It ANyway2........ccooeeeeiiiiiiiiineeeeeenn. 113
Mocks vs. Stubs vs. Dummies........cccoeevvvviiiievieneenenns 114
TestDriving Integration Code.............ccccevvviieeeieeennn. 117
TDD With The CUStOMEr.........uvvviiiiieeeeiieeeiiieeeeeee 125
Specification By Example.........cccooooevviiiiiieeiiiceceiienn. 126
User Storieg, Placeholders For Conversatians............. 128
Test Completeness & Test SCOPe........ccoeveevviviiieennn. 130
¢tKS ¢Saida 2S.5ARY.QG.C.KAYIBL h¥
5STAYAUGAZ2Y...2F.. 452 .Sé ... 131
DSGiAY3 ¢2 a52y.Sé..Ly..£SNBAOI ¢
Executable Specifications.............ccccooeeviiiieeeieiienenn, 134
The Customer Cannot Be Replaced.................cccce.e. 137
Driving Design From Customer Tests..........c.......... 140
Start With a Failing Customer Test..........ccccceeieeerennee.. 141
Identify The WOrK........coooooiiiiiiiceec e, 142
Identify The Knowledge Needed To Do The Watk......142
Name The Worker..........ooi i 142

CODEMANSHIP | TD® |

18.
19.

20.

21.

Testdriving Adding A Title To Thétary........................ 143
Testdriving Adding A Default Loan Copy To The Title147

Testdriving Reward PoINtS...........coovvviviiiinnieeeiiiiinn 149
Testdriving Email Alerts...........cccovviiiiieenciiii, 152
¢tKS aGa[2yYR2y {.QK22f.£..2.7..6160
Making Customer Tests Run Faster................ccceee.ee. 162
I'NB 2SS a52y.S£.. 280K ... 163
The Testing Pyramid............ccoovvviiiiiiinenieeeiiiiiinnn 165
TDD & Continuous Integratian................coeeevvvennnn.. 170
Before We CommitJpdate/Merge & Test Locally......... 171
After We Commit: Wait For The TestS To Pass On A Build Server
.. 172
Making Builds Fast............cccccoeiiieiiiicer e, 174
TDD & Continuous Delivery...........ccoveeieiviiiiieeeiiiieeeen, 176
Feature Branching & Feature Toggles..........cccccvvv...... 177
TDD & Legacy Code.....ccoooeevveiiiiiiiiiicceeeiee e, 179
2 KFG al{1Sa /2RS.4a[.5.3L.08.£1R0
Start By ldentifying The Change Point(s).................... 181
Next, Identify Inflection Points..........cccoccoviiiiiiiieennn, 182
Introduce Tests. Ankind Of TestS.........ccceeveeiiivienneeee. 183
Break The External Dependencies...........cccceeeeeevenen... 184
¢KS a. 2@ .{.02dzlé...wdzZ.S........... 190
Beyond TesDriven Development...........cccccocceeen... 192
Datadriven & PropertyBased Tests...........ccccvveeveeeenne. 192
Critical Code......ooouiiiiii e 195
Mutation TeSHING.......vevuuiieieir e e e e 196

Tests NA @AYy 3 ¢ KS...4l.yi0.84.0.k.0.018%
CODEMANSHIP | TDD |

NONFUNCHONAl TDD.....ivie e 202

Clean Code & Continuous Inspection......................... 205
Mastering TDD.......ooiv e 213
Building Habits............oouvviiii e 214
Make TDD Your Default Behaviour.................cocevvnneens 215
Under The Radar..........ccovvviiiiiiiiiiieeci e 216
Underpromise, Ovedeliver.........cccooovvvviiiiiiiiiceecieenn. 216
LiQa 9FaASNI ¢2 ! LRE.2IAARITC K] Y |
Practice, Practice, Practicel.............ccccovvviiiiiceeiiiinnnnnn, 218

CODEMANSHIP | TD® |

1.BEFORE WE BEGIN

Summary:

1. Tolearn TDD, you must do TDD
2. You can tackle the exercises in any OO language
3. You will need:
a. Aunittesting tod, based on the xUnit pattern, that
supports parameterized tests
b. Automated refactoring menu in your code editor
c. Mock objects framework
d. Pencil & paper

TDD is a practical discipline, like riding a bicycle or playing the
piano. To learn it, you must do it.

The focus of this book will be on doing TDD, and for that reason you
will only get the best from it if you try the exercises.

LQPS GNASR |a YdzOK Fa Ll2aarot s
you can tackle the exercises in any object oriented progrargmin
language you like.

But, whether you do them in Java (like | am), or C#, or Ruby, or
Python, or C++, you will need a number of things to get started:

9 Aunit testing toolfor that language

1 Ideally, a menu ofutomated refactoringsin your code
editor that will do the donkey work of refactoring for you

1 A framework for creatingt Y 2 O 2tiiaecé&ndé dseéd
in some of your tests

1 Pencil and paper

All of these things are freely available for most programming
languages.

CODEMANSHIP | TD® |

The xUnit unit testing framework degi pattern (invented by Kent
Beck and others) has been implemented in pretty much every OO
language; JUnit for Java, NUnit for .NET, RUnit for Ruby, etc.

t AO]1 GKS 2yS &2dzQNB Yz2ad O2YTF2NII
sure you pick one that enables ytuwrite parameterized testsAs

¢2dz2Qf t aSSs GKS& FNB dzad&R SEGSya.
Automated refactorings vary from editor to editor and language to
language. You will find that dynamically typed languages suffer a
disadvantage, as there is wly type information missing about
methods and method calls that a tool would need for some
refactorings. Java, Smalltalk and C# have excellent automated
NEFI OU2NAY 3 &dzLJ2 NI ® W @ { ONR LJi
working in a scripting languagediklS, expect to have to do some
refactoring by hand.

Mock object frameworks, again, vary in quality. But, in this book,
we will use them in quite specific ways that pretty much all of them
can handle.

Finally, have a pencil and paper handy. Always. Thrmuigthe

022132 6SQf f 4SS aArlGdzr GA2ya ¢ KSNE
down, or make a list of tests, or sketch a simple design. Not all our
thinking gets done in code.

CODEMANSHIP | TDIO|

2.WHYDO TDD

Summary

1 TDD helps us to build the right software

f TDD helps to avoid buddy 3 FSI GdzZNBa 6S R
making the desigitoo complicated

1 Rdactoring is a key part of TD.Helps us to keep code
easy to change

9 The short cycles of TDD, together with faginning
automated tests, help us to keep our software always
working

1 TCD helps us to deliveworking software sooner, and for
longer

Popularised in the late 1990s by Kent Beck, -Deiten
Development ¢TDE¥) combines practices that the best
programmers have used since the 1950s.

Done well, it helps us to address some keghpems in the way we
write software:

Building the right thing

Keeping the design simple

t NP RdzOAy3 O2RS GKI{GQa Sl ae
Making sure the software always works

Sustaining the pace of development

= =4 =8 -4 -9

BUILDING THE RIGHIING

LYF3IAYS 6SQNBE ¢hénhaVe Hoyild nffaRen list ojal 6 |
the things we think the kitchen needs: a cooker, a sink, a
refrigerator, a toaster, a kettle, cupboards, and so on.

CODEMANSHIP | TDI|

z 1%

2 KOG KFLIWSya ¢KSy ¢S | LILINEIFOK R
FSIFGdzNBa Aa KL G %rweefistifoutthatvgd o6 dzi
needed. For example, we might want to make fresh pabtd,

R A Rpyit@ pasta machinen our list.

To avoid finding out too late that our shopping list of features is
wrong, we start instead by considering exampletoiv thekitchen
will be usedand figureout what features ineedsto do that.

TDDworks this way We usetests as specificationfor what we
want to do using the software.

KEEPING THE DESIGMPLE

Along with the risk of leaving important features out of our ides
GKSNBQa |faz2 (GKS NRA]l 2F AyOf dzRA:

In software (as well as kitchens), unneeded features and
unnecessary complexity add costs, both initial and ongoing.
TDDencourages us to write the simplest code possible to pass o
GSadad LT (GKS (Sail eras a Wy ia B2QN
it.

twh5] / LbD / &BABY TO CHARGE

Seven decades of computer programming history has taught that
us that our code will almost certainly need to change.

If code is difficulto understand, complicated, full of duplication,
and too interconnected, then it will be expensive to change.

TDD explicitly includes a discipline caltethctoringthat helps us
to keep our code as easy to change as possible.

After we write the code to ass each test, we stop i@factorthe
code to make it simpler and easier to understand, to eliminate
duplication, and to manage the dependencies in the code to
localise the impact of changes.

CODEMANSHIP | TDIRZ|

MAKING SURE THE S@RRE ALWAYS WORKS

{2F06F NB (KKhasnBatbedl RQ& S HNMIQNE SF
O2RSs GKS O2RS AayQil ¢2NlAy3Io
TDD breaks development down into smeyicles. Thesemicro-

iterationstypically last just a few minutes, at the end of which we
have tested, working code thabuldbe shippedif necesssy.

We automate the tests so they can be run quicKiiis wayafter
each small change, we cantest the software tamake suret still
works.

SUSTAINING THE PAXWFEDEVELOPMENT

Keeping the code always working means we can deliver working
software soone.

And TDD also helps us sustain the pace of development for longer.

Adding new featurego new softwareis easy, and ourinitial
productivity is high.

But as the code grows, it becomkarderand harderto change it
without breaking it.

The rising cost fochange hinders teams trying to respond to the
changing needs of end users. The software becomes a liability
instead of a benefit.

TDD tackles the factors that make code harder to change-bead

RELIABILITY VS. PRQDIVITY

Too many developers have anrealistic view of the relationship
between the quality of their software and the time and cost of
creating it. The received wisdom is that more reliable software
takes longer to write.

CODEMANSHIP | TDID8|

A mountain of good industry data, however, paints a different
picture. Far from costing more, in the vast majority of cases
improving the reliability of our code would actually end up costing
usless

The counterintuitive causal mechanism for this strange effect has
been known for several decades. The later we discover tlieen,
more bugs cost to fix. A bug discovered by users in production can
cost 100x more to fix than if it had been caught as soon as the
programmer made the error.

cost of bug fix

requirements design coding testing release

The difference in cost of fixing bugs at later stages in development
can be so large thahy taking more care to catch them sooner, we
can actually end up going faster.

This is a strategy calledefect preventionand it has been hugely
successful at not only helping teams to improve the reliability of
their code, but also to save time and magneelivering working
a2F061 NBwinLiQa | gAYy

The net result is that better software usually costs less to create.

CODEMANSHIP | TDID4|

99% of
teams are
here

> reliability

most reliable
software at
lowest cost

¢55 OFy KStLI 3S0G dza AydG2 | aGags
at the lowest cost in four ways:

1 Agreeing executable tests catches margguirements
YAddzy RSNEGFYRAY3IEa 0SF2NB 6S¢
NEBIljdzA NEYSyia aGodzaae OFy Oz2al
fix in user testing or production

f ¢55 oNBIF14a O2RAy3I R246y Ayil?2
focus to every line of code we write andyhlighting more
errors that we might have missed taking bigger bites

9 TDD encourages us to keep our code simple, and simpler
code is less likely to be wrong

9 The automated tests TDD creates enable us to check for
new bugs we might have introduced immediatedfter
making a change

Studies done of teams adopting TDD have convincingly shown that,
on average, tesRNRA Sy O2RS A& YdzOK Y2 NJ
cost any more; and in many cases, costs les® deliver working
software.

CODEMANSHIP | TDIDB|

TDD is arguably the firsteéect prevention technique to have
gained widespread adoption.

CODEMANSHIP | TDIDg|

3.WHAT IS TDD?

In essence, TDD is an iterative process that involves three steps:

. GwSR fAIKGE

Write a
failing test

: - Jaonssy
Write the
simplest

code to pass

Refactor to
make the

next test
easier

the test

The tests can be at any level of abstraction. They can be system
tests, or component/service tests, or testy individual classes.

Some developers use a traffic liginalogy to remember the steps.

Each new failing test specifies something we want the software to
R2 GKIFIG Al OdaNNByite Rz2SayQiod o

We flesh out ourdesign one failing test aa time, addingjust
enoughimplementation to pass each new test, and keeping the
code as easy to change as possible by refactoring.

CODEMANSHIP | TDD7|

4. HOWTOTDD

Summary:

1 Start with the simplest failing test you can think of

1 Write the simplest code you can think of to gathe test
quickly

9 If noneed to refactor, move on to the next failing test

1 Refactor your test code, too!

9 Parameterized tests are a useful way to consolickitelar
test methods

1 Leave induplication when it makes tests easier to
understand

1 Aimfor one test method for each distinct rule. Use the test
name to clearly convey the rule

9 Tests should read like a specification

9 Localise dependencies on the objects under test

f LY ¢553 6SQNB R2yS 6KSy 4S5
that shouldfail

9 TDD is a process design discovery

9 Tests make changes safer and easier

The best way to explain how to tedtive a software design is with
a simple example.

2 Sr@going tocreatesome code that wiltalculatenumbers in the
Fibonaccsequence

The Fibonacci sequenceags with zero and one, and then all
subsequent numbers are the sum of the previous two.

i.e. 0,1, 0+1=1, 1+1=2, 2+1=3, 5, 8, 13, 21 etc

CODEMANSHIP | TDI8|

FAILING TEST #1

2SQff A0l NI o0 PoNAARXYR2AY I AGAY
Junit testing framework.)

Tryto think of the simplest test you could start wighthe one that
would be easiest to pass.

public class FibonacciTests {

@Test
public void firstNumberinSequencelsZero() {
assertEquals (0, new Fibonacci().getNumber(0));

}

}
[SGQa gindesicBde thét &ill passhe test
public class Fibonacci {

public int getNumber(int index) {
return 0;

}
}
bSEGE fSiQa f 2 2 ve nedl to tefaGor i@ |y
the next test easier.

l'd GKA& LRAYGZI AGQa KI NR edsier 4SS
to change.

{2 tSGQa Y208 2y (2 GKS ySEG ¥t

CODEMANSHIP | TDID9|

FAILING TEST #2

public class FibonacciTests {

@Test

public void firstNumberinSequencelsZero() {
assertEquals (0, new Fibonacci().getNumber(0));

}

@Test

public void secondNumberinSequencelsOne() {
assertEquals (1, new Fibonacci().getNumber(1));

}

}
Againwe write the simplest code that will paskoth of these tests.

public class Fibonacci {

public int getNumber(int index) {
return index ;
}

}

b2¢ GKIG 6SQNB o6F 01 2y | 3INBSyY
refactoring again.

¢tKS AYLX SYSyidliAazy O2RS ft221a 2
obvious duplication in the test ced(Remember: test code needs

to be easy to change, too!)

The most direct way we could eliminate this duplication would be
to turn these two very similar test methods into a single
parameterized testoveringboth cases.

The builtin mechanism inunit for writing parameterized tests is a
oAl Of dzy1 & = az L Q YJUnitPhtarksy 3
(github.com/Pragmatists/JUnitParaie make life easier.

CODEMANSHIP | TDEO|

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

@Test
@Parameters ({ "0,0" ,"1,1" })
public void firstTwoNumbersAreSameAsindex(int index,

int expected) {
assertEquals (expected,
new Fibonacci().getNumber(index));

}
Now, for another failing test.

FAILING TEST #3

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

@Test
@Parameters ({ "0,0" ,"1,1" })
public void firstTwoNumbersAreSameAsindex(int index,

int expected) {
assertEquals (expected,
new Fibonacci().getNumber(index));

}
@Test

public void thirdNumberinSequencelsOne(){
assertEquals (1, new Fibonacci().getNumber(2));
}

}

And then the simplest code to pass all three tests:

CODEMANSHIP | TDBL|

public class Fibonacci{

public int getNumber(int index){
if (index < 2)
return index;
return 1;

}
}

Notice the branch in our implementation codé&here are two
distinct rules (or patterns) in our solution: one for the first two
numbers, and another for the rest.

If our tests are to serve as specification, it helps enormously if the

rules are obvious from reading the test code.

{22 S@PSy {(K2dzaK GKSNBQa a2YS 200
this instancereadability is more important

For this reason, | chooseot to add this third test case to the
parameterized test for the first two Fibonacci numbers.

This way, we end up withtast method for each ruleand we can
use the names of those test methods to clearly communicate the
rules.

But thereQa@nother bit of duplicaion in the test code we should get
rid of.

Both tests know how to instantiate Bibonaccobject and invoke

the getNumber()method. If the interface of Fibonacci changes,
pSQftf ySSR (2 OSIGNRAS NBEE OXRNS § KS
put that knowkdge in one place.

CODEMANSHIP | TDER|

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

@Test
@Parameters ({ "0,0" ,"1,1" })
public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {
assertEquals (expected, getFibonacciNumber(index));

}

@Test
public void thirdNumberinSequencelsOne(){
assertEquals (1, getFibonacciNumber(2));

}

private int getFibonacciNumber(int index) {
return new Fibonacci().getNumber(index);

}

}

2S FTAYR AdQa 3ISySNrtfte I+ 3IA22R A
code has of the interfaces of the objects being tested.

[S @n@va on to another failing test.

FAILING TEST #4

@Test

public void fourthNumberinSequencelsTwo()}{
assertEquals (2, getFibonacciNumber(3));

}

To pass this test, the simplest solution | could think of is:

public class Fibonacci {

public int getNumber(int index){
if (index < 2)
return index;
return index - 1;

}

We discovered one rule for the first two numbers, amdecond
rule for the next two.
CODEMANSHIP | TDES|

w»
QX
c
O«
N
¢
w»
[

[SGQa NBFFOG2NI GKS
parameterized test.

@Test
@Parameters ({ "2,1" , "3,2" })
public void thirdNumberOnlsindexMinusOne(int index,

int expected){
assertEquals (expected, getFibonacciNumber(index));

}
dziT 6 SQNB y24G R2yS &8SGo 1286 R2 ¢
we can think ofmore failing test cases

FAILING TEST #5

The sixth Fibonacci number has an index of 5 and a value of 5.

@Test

public void sixth NumberlsFive() {
assertEquals (5, getFibonacciNumber(5));

}

To pass this test, the simplest change we can make to the
implementation is:

public class Fibonacci{

public int getNumber(int index){
if (index < 2)
return index;
return getNumber(index - 1) + getNumber(index - 2);

}
}

The fifth number obeys the same rule as the third and fourth, so
GKFG SEGNI GS&0G A& RdzLX AiCakionA 2y
Fye SIFaASNI 2 dzyRSNRGIFIYR® [SGQa Y
for third and fourth, and rename the test method to more
accurately describe the rule.

CODEMANSHIP | TDRH4|

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

@Test
@Parameters ({ "0,0" ,"1,1" })
public void firstTwoNumbersAreSameAsIndex(
int index,
int expected) {
assertEquals (expected, getFibonacciNumber(index));

}

@Test

@Parameters ({ "2,1" , "3,2" , "55" })

public void thirdNumberOnlsSumOfPreviousTwo(int index,

int expected){
assertEquals (expected, getFibonacciNumber(index));

}

private int getFibonacciNumber(int index) {
return new Fibonacci().getNumber(index);

}
}
¢t2 FAYAAK dzLlJx f SGQa a mfteskchsessr S O

FAILING TEST #6

What would happen if we asked for thédth Fibonacci number?
2 SQR SELISOG GKF G G2thfumber.s 6 SOl dz

@Test(expected=lllegalArgumentException. class)

public void indexMustBePositivelnteger() {
getFibonacciNumber(-1);

}

To pass this test, we just need to check the parameter value
satisfiSa 0KS NMz ST FyR GKNRg GKS alL

CODEMANSHIP | TDEb|

public class Fibonacci{

public int getNumber(int index){
if (index <0)
throw new lllegalArgumentException();
if (index < 2)
return index;
return getNumber(index - 1) + getNumber(index - 2);

}
}

Our tests now read like a specification for our Fibonacci calculator.
Just by looking at the names of the test methods, we carttsee

are three distinctrules, and the names clearly convey what those
rules are.

We discoveredthis design by working through a sequence of
examples failing tests¢ and doing the simplest things we could
think of to pass them.

The end result is a working Fibonacci calculatdth & suite of fast
running automated tests that will help us if we need to change the
calculator later.

WHY GO TO ALL THEOUBLE?

Now, imagine we deliver this code to our end users, who complain
i K I {too dlaivOrghigher indexes.

This is because owlgorithm is recursiverecalculating the same
numbers many times.

We decide to replace it with an iterative solution that remembers
YR NBdzaSa ydzyoSNA 2y 0S (KSe Q@S

CODEMANSHIP | TDBS|

public class Fibonacci{

public int getNumber(int index) {
if (index < 0)
throw new lllegalArgumentException();

int [] sequence = new int [index+1];
for (int i=0;i< sequence. length ;i++){
if (i<2)
sequence[i] = i;
}else {
sequence[i] = sequenceli - 1] +sequence[i -2];
}
}

return sequence[index];

}
}

LiQa YdzOK &l TS NJca’e wé havesa gdol detiof O K
automated tests that will alert us straight away if we break the
software.

This is a very important thing to remember about TDD: it may seem
like overkill to take such baby steps and write so many tests for such
asimpleproble® . dzi 6SQ@S f SINYySR GKIF
software development is the cost of changing code later, and for
the extra upfront investment of TDD, we get a potentially much
larger payoff.

CODEMANSHIP | TDRY|

EXERCISE #1

a. Testdrive some code that wiljenerate a lis of prime
numbers that are less than 1,000

b. Testdrive some code that will convert integers from 1 to
4,000into Roman Numerals

EXERCISE #2

Testdrive some code that will calculatiee total net value of items
in a shopping camepresented as a list of urprice and quantity ¢
e.g.,{{10.0, 5} {25.5, 2}} with the following discounts applied:

1. If total gross value > £100, apply a 5% discount
2. If total gross value > £200, apply a 10% discount

CODEMANSHIP | TDES|

5. THE GOLDEN RULE

Summary:

1 52y Qi gNAGS &2 dagussitO2RS dzy i A

1 Referencg new classes,, mqthod§, vqriqbles etc in your test
FANRGZ a2 GKS O2RS g2y Qi 0O2Y
them

1 Aim to havgustone thing broken at a timé possible

As the name implies, TeBriven Development drives software
designdirectly from tests.

In practice, what this means is:

We do not write any source code until we have a failing test that
requires it

{2 6KSY -RNFAMMB/ 3G 3a00t+aas oS R2)
then start writing tests for it. We start by wing a test, and only
declare the class when the test needs us to.

public class ShoppingBasketTests {

@Test
public void emptyBasketHasMoNetValue() {
ShoppinkBasket basket;

¥
) © Create interface 'ShoppingBasket'

3 Create class 'ShoppingBasket'

Change to 'ShoppingBasketTests'
O Create enum 'ShoppingBasket’

I SN | . [Pt e

CODEMANSHIP | TDRO|

As | tackle the shopping basket exercise, | start by writing a failing
test that uses theShoppingBasketlass | intend to create.

a® SRAG2NI FfF3a dzLJ GKIF § tsimk ®NB Qa
create one.

PYGAE L R2 O GKFGZ (K SDrokortd’tSThes 2 y Q (i
Golden Rule gives me permission to fix it so | can moveorDD,

a broken test is a failing test.

BasketTests {

BasketHasNoNetValue() {
t basket = new ShoppingBasket(items);

@ Create local variable ‘items’
asketHasNoMNetValue() { reatelocal vaniable tems

o Create field ‘items’

sket = new ShoppingBasket(items); © Create parameter ‘items’
o Create constant ‘items’

= Rename in file (Ctrl+2, R

Next, | write code that passes a variable caltedhsinto the ¢ as

yet nonexistent - constructor of ShoppingBasketAgain, Eclipse
GStfta YS (GKSNBQa y2 adzOK @ NRI 61
declaring one.

fetHasNoNetValue() {

2
£ The constructor ShoppingBasket(float[][]) is undefined

isket = new ShoppingBasket(items

2 quick fixes available:

= Remove argument to match ‘ShoppinaBasket()’
& Create constructor 'ShoppingBasket(float[1[1)'

Press 'F2' for focus

CODEMANSHIP | TDBO|

Moving on, we create the constructor. And keep going in this
fashion, only declaring source code when the tegjuires it.

Of course, wecould write the entire test, and then declare
everythingit needs. But in TDD, we favour the shortest feedback
cycles, and so prefer to have one thing broken at a time if possible.

TESTDRIVEN DESIGN VSSDENDRIVEN TESTING

A classic mistake programmers new to TDD make is to write failing
tests that assert a design they have in mind, rather than a behaviour
or a rule they want the software to handle.

For example, some people will write a test for a class they want to
declare:
@Test
public void forecastisNotNull() {
WeatherForecast forecast = new WeatherForecast();
assertNotNull (forecast);

}

In a literal interpretation of the Golden Rule, this gives them
permission to declare the cla¥¥eatherForecast . dzi X | a &
Ay GKSAN ySEG (G4Sadtz AGQa NBRdz/R
@Test
public void forecastForTodaylsAverageOfPreviousTwo(){

double [] previousDays = new double [J{17, 18};

assertEquals (17.5,
new WeatherForecast(previousDays).forecast());

}

If WeatherForecasR2 Say Qi SEA> GKA& &8
compile.Most importantly, we only need to declare the class so
that we can test the result dbrecast()

Be wary of writing tests like this, or that test getters, or other
FaLSoda 2F (GKS AGvedSSyy SIVKH Vid2y Q
0 &2 YSRNATO Soya UGH-af it A yoaR S5
NAGPSYy RSaAadyeod

CODEMANSHIP | TDBI1|

Focus your failing tests on the results of desired behaviour, and
details like this will fall out naturally as we work our way to a
solution.

EXERISE #3

Repeat exercises #1 and #2, applying the Golden Rule

CODEMANSHIP | TDB2|

6.START WITH THE QUEBN

Summary:

1 Write the test assertion first and work backwards to the
setup

Tests have 3 componentssetup, action & assertions
Starting with the assertion helps us to diser what setup
we need

)l
)l

Functional tests have three components:

9 Thesetup: arranges objects and test data for the test

I Theaction invokes the method or function being tested

9 Theassertion(s) asks the questions that will tell us if the
action worked

Intuitively, we tend to write test code in that order. But that can
lead us into difficulties.

How do we know what sedzL] ¢S Yy SSR F2NJ GKS
uncommon, when we write tests in the Arrangéct>Assert
2NRSNE G2 23S0 G2 G K SwittedtieSvNTgh 2 v
setup for the question we want to ask.

The test is all about the question, so in TDD we recommend you
start there and workbackwardgo the setup you need to ask it.

This may take some getting used to, hutith practicecé 2 dzQf f a |
to feel comfortable doing it this way.

[S§GdQa t221 |4 Ly SEFYLXS G2 Aff
assertions.

Ly GKA& SEI Yitiving $omescbda hcomibifes il
dimensional arrays into a single 2D array

We start by writing the assertion

CODEMANSHIP | TD88|

public class ArrayCombinerTests {

@Test

public void twoEmptyArraysCombineToAnEmpty2DArray() {
assertArrayEquals(new int[][]{},

combiner.combine(arrayl, array2));

Notice that our assertion references three local variables that

KFEI oSy Qi o06SSy RSOfIFINBR &S .& g4I
discovered what setip our test will need.

b2gx tSiQa ¢2N] o0 ¢l NRa (2 ONSBI
@Test

public void twoEmptyArraysCombineToAnEmpty2DArray() {
assertArrayEquals(new int[][]{},

& combiner cannot be resolved

10 quick fixes available:
@ Create local variable ‘combiner’ ~
o Create field ‘combiner’

© (Create parameter ‘combiner’

® (reate class '‘combiner’

My editor prompts me to createa local variable calledombiner
which | declare as typ&rrayCombiner

@Test

public void twoEmptyArraysCombineToAnEmpty2DArray() {
Ar‘r‘al{tombiner‘l combiner;

& ArrayCombiner cannot be resolved to a type
} T quick fixes available;

® Create class "ArrayCombiner’

O Create interface 'ArrayCombiner’

@ Change to ‘ArrayCombinerTests’
O Create enum 'ArrayCombiner’

LQY GKSy LINBPYLIGSR (2 ONBIGS GKIG
CODEMANSHIP | TDB4|

In a similar fashion, | work my way backwards to declaring local
variables calle@rraylandarray?2

¢KSY LQY LINEY Llaogbne(fnthod, Svhidhisth® (1 K
FOtAz2y 6SQNB GSalday3do

@Test
public void twoEmptyArraysCombineToAnEmpty2DArray() {
ArrayCombiner combiner;
int[] arrayl;
int[] array2;
assertArrayEquals(new int[]1[]1{},
combiner.combine(arrayl, array2));

&8 The method combine(int[], int[]) is undefined f
2 guick fixes available:

@ Create method ‘combine(int([], int[1)" in type '
(k Add cast to ‘combiner’

c
(p))

bSEGZ LQY al1SR (2 AyadlugdAl

@Test
public void twoEmptyArraysCombineToAnEmpty2DArray() {
ArrayCombiner combiner;
int[] arrayl;
int[] array2;
assertArrayFquals(new int[][]{},
combiner.combine(arrayl, array?2));

£ The local variable combiner may not have been initialized

1 quick fix available:
@ |Initialize variable

Press 'F2' for focus

Once combiner arrayl and array2 have beeninitialised in the
correct state for our test, we have the complete sat.

CODEMANSHIP | TDBb|

public class ArrayCombinerTests {

@Test
public void twoEmpty ArraysCombineToAnEmpty2DArray() {
ArrayCombiner combiner = new ArrayCombiner();
int []arrayl = new int [{};
int [| array2= new int [{};
assertArrayEquals (new int [JI{},
combiner.combine(arrayl, array?2));

EXERCISE #4

Writing the assertions first and working backwards to the-iget
test-drive some codéo calculatehow much water will be needed
to fill the following:

1. Acube
2. Acylinder
3. A pyramid

CODEMANSHIP | TDBS|

/. TEST YOUR TESTS

Summary:

1 See the test assedn fail, so you know that if the result is

wrong, the test will catch that

Implement just enough to see the assertion fail

¢Sad ylrySa akKkz2dZ R Of SI NI &

happen, to help developers fix it when a test fails

1 How we write assertions can ake a difference to how
helpful test failure messages are in identifying the cause

1 Expected exceptionend mock object expectations are
kinds of assertions

)l
)l

In order for our automated tests to give us good assurance that the

(

O2RSQa ¢2NJ Ay Bdodest.S& ySSR (G2 0685

LGiQa AYLERNIIFIYyd G2 OKSOl GKFGX
will fail.

C2NJ GKAA NBlFaz2ysz Al QBefork yod Krited
the code to pass the testyou see the test fail for the right reason.

public class VideoLibraryTests {

@Test

public void donatedTitlelsAddedToTheLibrary() {
VideoTitle title = new VideoTitle();
VideoLibrary library = new VideoLibrary();

library.donate(title);
assertTrue (library.getTitles().contains(title));
}
}

When | run this test for donating a video title to a community
library, | get the result:

CODEMANSHIP | TD8Y|

A

NE

gu Junit = 08

Finished after 0.01 seconds
Runs: 1/1 B Errors: 1 B Failures: 0

4 g VideolibraryTests [Runner; JUnit 4] (0.002 s)
£ donatedTitlelsAddedToTheLlibrary (0.002 s)

Failure Trace =

R
=

java.lang.NullPointerException

m ..

{E’GBEU'—E|%&.> i - *

at VideolibraryTests.donatedTitlelsAddedToTheLibra

This is because, at the momeNideoLibrary.getTitles(@turns null

60801 daS L KIgSyQi 6NRGGSY

aKIFQ

1

¢KS dSaid FaaSNIAz2¢yp KiBayRaRy®RESYES

because of the unhandledullPointerExceptian

To have confidence in this test, what | need to know is if the

FaaSNIAZ2Y @Aff Tl At GKSY

GdKS

collection. So | must add just enough implementation te #eat

happen.

CODEMANSHIP | TDB8|

R 2

public class VideoLibrary {

public List<VideoTitle> getTitles() {
return new ArrayList<VideoTitle>();

}

public void donate(VideoTitle title) {

}

}

Now we can see that the test does indeed fail if the donated title
AadyQlil Ay IRRSR (2 GKS fAONINEO®

SIDENOTE

1 3aSNIA2ya R2y QG 2dzAad O02YS Ay GKS | 448
objectexpectsk 2y a4 606 KAOK 4SQff O20SNJ £ GSND =
sure you see them fail, too.

I Package Explorer gu JUnit 22 = 8
O o e®RE QAR mEY ¥

Finished after 0.01 seconds

Runs: 1/1 B Errors: 0 B Failures: 1
]

4 Bl VideolibraryTests [Runner: JUnit 4] (0.001 s)
|E donatedTitlelsAddedToThelLibrary (0.001 5}|

= Failure Trace o5

10 java.lang.AssertionError
= at VideolibraryTests.donatedTitlelsAddedToThelLibrz

CODEMANSHIP | TDB9|

When tests fail, this is our opportunity to send a message to some
developer in the future who might be asked to change our code
(and that could be us!)

The nost important piece of information is\What should have
happened& &nd the best place to convey this is in the name of the
test.

FLUENT ASSERTIONS

lf 6K2dAK ¢S y2¢6 KIS O2yFARSYyOS
added to the library, this test would cattiat, we have to read the

0Sad YSGK2R ylLYS G2 1y2¢ 6KFO gt
may be obvious, but often we need more information than a test

name can give us.

LiQa 0SO02YAy3 Y2NB L2 Lz | NI F2 N R
GFt dzSy i ¢ass@rioNditHatzahdprovide extra information
about exactly which part of the assertion failed.

For example, using Hamcresivgw.hamcrest.org, | could rewrite
my assertion:

@Test
public void donatedTitlelsAddedToTheLibrary() {

VideoTitle title = new VideoTitle();

VideoLibrary library = new VideoLibrary();

library .donate(title);

assertThat (library .getTitles(), contains (title));
}

When this test fails, we get more informati in the failure trace.

CODEMANSHIP | TDBEO|

£ Package Explorer gilf JUnit 2 - B8

L B R - -
Finished after 0.024 seconds

Runs: 1/1 B Errors: 0 B Failures: 1

4 gt VideolibraryTests [Runner: JUnit 4] (0.000 s)
&l donatedTitlelsAddedToTheLibrary (0.000 s)

— - —+!
= Failure Trace

Y1 java.lang.AssertionError:
Expected: iterable containing [<VideoTitle@4594a0ad =]
but: No item matched: <VideoTitle@4594alad >
at org.hamcrest MatcherAssert.assertThat(MatcherAssertjava:20)
at VideolibraryTests.donatedTitlelsAddedToTheLibrary(MideoLibraryTe

CODEMANSHIP | TD®1|

EXERCISE #5

Testdrive code to leave reviews for movjesith:

1 Avrating from 15

T ¢KS yIFYS 2F (KS NBGASHESNI 0RS-
not supplied)

9 The text of the review

It should calculate an average rating for a movie, als report
the number of reviews for each rating. E.g.,

The Abyss

Rating No. ofReviews
13

11

4

5

2

Makesure@ 2dz | LJILX & Fff GKS ARSIa 6S¢
including seeing the test assertions fail for the right reasons.

P N W b~ Ol

CODEMANSHIP | TDB2|

8.ONE REASON THAIL

Summary:

9 Tests should ask a single question, so that:
0 We can bring more focus to each design decision
0 Get more feedback with each decision
0 More easily debug when tests fail
0 Test code is easier to understand

When we testdrive the design of our codeye strive to take baby
steps, making one decision at a time and getting feedback with
each step.

For this and other reasons, it works best when each test asks only
one guestion.

public class LibraryTests {

@Test

public void donatedTitlesAddedToLibrary() {
Library library = new Library();
VideaoTitle title = new VideoTitle();
Member donor = new Member();

library.donate(title, donor);

assertTrue (library.contains(title));
assertEquals (1, title.getRentalCopyCount());
assertEquals (10, donor.getPriorityPoints());

}
}

In this example, our test asks three que y a @ 2 SQ@S Yl
design decisions in a single step, and will have to do more to get it
the test to pass.

Think, too, about what will happen if this test fails. Which part of
the implementation is broken? Tests that ask too many questions

are harder b debug when things break.
CODEMANSHIP | TDEB]

Tests that ask too many questions bring less focus on each design
decision and less feedback as we-goth the inevitable impact on
code quality that we observe as feedback cycles get longer.
LGQ&a oS340dSNI G 2in thirée Gebts, SachioeraskingSaE | Y L
specific question.
public class LibraryTests {

private Library library

private VideoTitle title
private Member donor ;

@Before
public void donateTitle() {
library = new Library();
title = new VideoTitle();
donor = new Member();
library .donate(title , donor);
}
@Test
public void donatedTitlesAddedToLibrary() {
assertTrue (library .contains(title));
}
@Test
public void donatedT itlesHaveOneDefaultRentalCopy() {
assertEquals (1, title .getRentalCopyCount());
}
@Test
public void donorsGetTenPriorityPoints() {
assertEquals (10, donor .getPriorityPoints());
}

}

Notice how giving each question its own test enables us to
document each rule with the method namemaking the tests
easier to understand.

Some people naively interpt the need for tests to ask only
jdzZSadA2y Fa YSIFIyAy3a fAGSNIrffe &

z

FaaSNIA2yé® LGQa y2iG GKFG aAYLE S

CODEMANSHIP | TDB4|

@Test
public void fibonacciSequencelsGenerated() {
Fibonacci fibonacci = new Fibonacci();
assertequals ("0,1,1,2,3,5,8,13" ,
fibonacci.generateSequence(8));
}

How many reasons does this test have to fail? | can see nine: each
individual number in the sequence has to be calculated correctly,
and they have to be separated by commas.

This approach means taking big leaps instead of baby steps, making
multiple design decisions before getting any feedback.

Better to break it down, like:

@Test
public void firstNumberinSequencelszZero() {
Fibonacci fibonacci = new Fibonacci();
assertEquals ("0" ,
fibonacci.generateSequence(8).split(" oD;
}

In TDD, the ability to break problems down into the smallest
guestions is key.

Finally, be careful about alternative kinds of test assertions. How
many reasons does this test have to fail?

@Test

public void donatedTitlesAddedToLibrary() {
Library library = new Library();
VideaoTitle title = new VideoTitle();
Member donor = mock(Member. class);

library.donate(title, donor);
assertTrue (library.contains(title));
verify (donor).awardPoints(10);

CODEMANSHIP | TDBS|

9.TESTS SHOULD BE SELF
EXPLANATORY

Summary:

1 Choose names of test methods to clearly convey what the
testis

1 Usenames for helper methods, objects, fields, constants
and variableghat clearly convey their role in the tests

1 Usetest fixture nameghat make iteasy to find tests

9 Pick test data that highlights boundaries in the logic

1 Name literal valueg using constants or variablesif it
makes their significance clearer

1 Some duplication in test code is fine when it makes the test

easier to understand

CODEMANSHIP | TDB6|

public class Testsl {

private BankAccount al;
private BankAccount a2;

@Before
public void init() {
al = new BankAccount();

a2 new BankAccount();
al.credit(100);
}
@Test
public void transferTest1() {
doAction();
assertEquals (50, al.getBalance(), 0);
}
@Test
public void transferTest2() {
doAction();
assertEquals (50, a2.getBalance(), 0);
}

private void doAction() {
al.transfer(a2, 50);
}

}

P4 FANRG 3F3tFLyOST Ad0Qa y20 AYYSHE
about. Poor choices of names for the test fixture, test methods,
FASEtRa YR KSfLISNI YSGK2RA YIS

a funds transfer between agyer bank account and a payee.

LT 6S NBTFIFOG2NI 6KA&a O2RSz ¢S OF
with the test method names.

CODEMANSHIP | TD®Y|

@Test
public void transferDebitsAmountFromPayer() {

doAction();
assertEquals (50, al.getBalance(), 0);
}
@Test
public void transferCreditsAmountToPayee() {
doAction();
assertEquals (50, a2.getBalance(), 0);
}

Test method names should clearly convey what the test is. Not how

the test works, or what mthod or class is being testhat is the

test?

52y Qi ¢62NNE AT @2dz KI @S G2 6NRGS
2 SONB y2i0 RSaAayAy3dI Ly 1tLYE YyR |
code that calls our test methods. Think like a newspaper headline
writer.

Now, how about those fieldg,l and a2?

private BankAccount payer ;
private BankAccount payee ;

Try to name test objects and test data (fields, variables, constants)
sothey conveytheoled K G 202S0G LX I é&a Ay (K
0KS OdzaG2YSNkdzaSNJ OFff GKAA&AKE

Now, how dout that unhelpfully general helper method,
doAction(?

@Test

public void transferCreditsAmountToPayee() {
transferFunds(payer , payee, 50);
assertEquals (50, payee .getBalance(), 0);

}

private void transferFunds(BankAccount payer,
BankAccount payee,
int amount) {
payer.transfer(payee, amount);

}

Renaming it tdransferFunds(inakes it much clearer what it does.
CODEMANSHIP | TDEB|

LQ@S | faz2 Ayl NRpgeOByReahdamtuny 4 S NA
we can better interpret what hgpens just by looking at the call to
that method in the test.

Theinit() method sets up our accounts before each test method is
run. We could make it a bit more obvious by renaming it.

@Before
public void setupAccounts() {
payer = new BankAccount();

payee = new BankAccount();
payer .credit(100);

And finally,Tess1 A & y Q(umina@ng Nene forfa test fixture.

2 KSy a42YS2yS ala G2KSNB FNB (K
g2y Qi 0S 2F YdzOK KSt LI Ay FTAYRAY
obvious what these are the tests for.

public class BankAccountTests {

As well as namingour choice of test data can also help to make
tests clearer.
@Test(expected=InsufficientFundsException. class)
public void cannotWithdrawMoreThanBalance() {
BankAccount account = new BankAccount();

account.credit(100);
account.debit(100.01);

}

In this example, we could have chosen any amount to debit great
than 100, but by choosing 100.01, we more clearly communicate
where the boundary is. Debitin00 will work just fine. Debiting a
penny more will cause an exception to be thrown.

If we wanted to make it even more obvious, we could name the
opening balance.

CODEMANSHIP | TDB9|

private static final int BALANCE = 100;

@Test(expected=InsufficientFundsException. class)
public void cannotWithdrawMoreThanBalance() {
BankAccount account = new BankAccount();
account.credit(BALANCE;
account.debit(BALANCE + 0.01);

}

Naming literal values like this can sometimes help ity its
significance in the test.

[Faldf e R2ylthoughawBrsuld séek to femove
duplication from our test codeif it makes it easier to understand,
leave it in.Readability trumps reuse.

EXERCISE #6

Reuvisit the code you write for exéses 15, and see if you can make
the tests easier to understand by refactoring them.

If you can find someone to help, ask them to read your tests and
O2YYSyild 2y lFyedKAy3a O(GKFdG AayQi

A great way to practice choosing test method names wherQyds
pair programming is for one person to declare the test, and then let
the other person write the test codeased only on the name

CODEMANSHIP | TDBO|

10. SPEAKING THE CUST@ME{
LANGUAGE

Summary:

1 The key to communicating on a software project is to
establish a shared languag

T 1aS GKS Odzad2YSNQRa fF+y3da 3S
code

1 Requirements documents and acceptance tests are a good
source of inspiration

1 A tag cloud generator is a cheap way of building a visual
glossary of customer terms

The names we chooder classs, methods, variables and other
itemscan have a profound effect on the way we understand code.

public class PlaceRepositoryTests {

@Test
public void allocateFlagsPlaceForUser() {
PlaceRepository placeRepository =
new PlaceRepository();
User user = new User();
Place place =
placeRepository.allocate("A" | 1, user);
assertEquals (user, place.flaggedFor());

}

}

If I asked you what business domain this code comes from, could
you tell by looking at the code?

How about if we change sonud the names?

CODEMANSHIP | TDBI1|

public class FlightSeatingTests {

@Test

public void seatlsReservedForPassenger() {
FlightSeating seating = new FlightSeating();
Passenger passenger = new Passenger();
SeatReservation reservation

= seating.reserve("A" | 1, passenger);
assertEquals (passenger,
reservation.getPassenger());

}

The key to communicatiois ensuringS S NE adl 1 SK2f RSN
mental model is roughly the sam&at means we all need to be
speaking the same language

If software design is all about solving the c&s¥ SN & ,itINRP o6 f S
stands to reason that the language we should all be speaking is the
Odzai2YSNXRa fFy3dz 3S

| SNBQad UGKSANI RSAONRLIIAZ2Y 2F K2¢g |
The passenger selects the flight they want to reserve a seat

on. They choose the seat tow and seat number (e.g., row

A, seat 1) and reserve it. We create a reservation for that
passenger in that seat.

2 KSy @2dzQNBE aSINOKAy3 F2NI I ylYS
or a new variable, lookto i KS Odzai2YSNR&a RSa
inspiration Whatdo they call it?

Some teams take establishing a common language so seriously that
they create and maintain glossaries of terrds.cheapr way of
achieving something similar might be to run requirements
documents¢ including acceptance tests through a tay cloud
generator

I SNBQa 2yS L YIRS FNRBY a2YS dzas
reservation system.

CODEMANSHIP | TDBR|

specify TOwW

selects create

Hight seatT
number

avallable new listed fully
choose

longer reserve

reserved reservations

change cancel
EfEiIlT: booked

passenger
reservation

CODEMANSHIP | TDBS|

EXERCISE #7

Testdrive some code to automatically play a game based on the
following problem. Run the description below through a tag cloud
generator,and use it for inspiration when choosing names in your
code.

Rock- Paper - Scissorsis a game for two players.

Each player simultaneously reveals whether
they have randomly selected Rock, Paper, or
Scissors. The winner of each round is
determined as follows

Rock blunts Scissors T Rock wins
Scissors cuts Paper I Scissors wins
Paper wraps Stone T Paper wins

If both players select the same, then that
round is a draw.

The game consists of three rounds, but if
thereods no cl ear wi nner after
continue p laying until one of them wins.

CODEMANSHIP | TDB|

11.

TRIANGULATING

Summary:

9 Triangulation allows us to discover the simplest design one
test case at a time

9 Like triangulating a position on a map, it works by choosing
2 or more data points and finding the simplsstutionthat
satisfies them

9 Taking baby steps brings more focus on each design
decision and leads to better test assurance

9 Starting with the simplest failing test we can think of, we
gradually generalise the desigst enoughwith each new
test

9 Itrequires at leas® tests to generalise to a patteor rule

I Use test names to documerthe patterndrules as they
emerge

1 As we triangulate our design, we may notice patterns to the

way code generalises that can help guide us
Sometimes, the implementation to pass a tesblsvious

FYR GNAGAIES FYR 68 R2y Qi vy S

Creating designs that are as simple as possible, and that work
reliably, requires us to apply more focus to every design decision.

In TDD, instead of leaping for a general solutionfneagulate.

Triangulation is the term we use for the process of pinpointing a
solution usingmultiple examples It comes from trigonometry,
where we use triangles to determine thiéstance andocation of a
point (e.g., on a map).

CODEMANSHIP | TDBb|

N

Ha b >
L

D =L *((sin(a) * sin(b)) / sa¥b)

We take multiple bearings to an objegte wish to know the
location of,and that object is where the lines meethe location
that exists on all those bearings.

Triangulating in TDD is similar. We pick a failing test case, and come

up with the simplest solutiorjust to pass that testAnd then we

pick another failing test, and generalise to the simplest solution

that passedothtests.! YR ¢S {1SSLI A2Ay 3 dzy (At
any more failing tests, looking for the simplest solution that passes

all of ourtests.

2 500S | £ NBI Ré oatBaBgllatibny whénBe Yestf S
drove code to calculate Fibonacci numbers in the chapitew ©
TDD?

We could have started by writing a single test.
public class FibonacciTests {
@Test

public void fibonaccilsSumOfPreviousTwoNumbers() {
assertEquals (21, new Fibonacci().getNumber(8));
}

}
And then implemented a general algorithm to pass it.

CODEMANSHIP | TDBS|

public class Fibonacci{

public int getNumber(int index) {
if (index <0) throw new lllegalArgumentException();

if (index< 2)
return index;
return getNumber(index - 1) + getNumber(index - 2);

}
}

But this is something of a leap. Already, we have things in our
solution that no test requires (namely, the gdacondition about
negative indegs).

How did we know this is the right solution? How did we know this
is the simplest solutioh And how confident are we that if someone
breaksthis codelater, our single test will catch itdow easy would

it be to debug it?

Instead, what we did was take baby steps, starting wilie
simplest failing test we could think of (the one that would bsiest
to pass).

public class FibonacciTests {

@Test
public void firstNumberlsZero() {

assertEquals (0, new Fibonacci().getNumber(0));
}

}
And then did the simplest thg possible to pagsistthat test.

public class Fibonacci{

public int getNumber(int index) {
return 0;
}

}

Then we picked the next simplest failing test we could think of.

CODEMANSHIP | TDBY|

@Test
public void secondNumberlsOne() {
assertEquals (1, new Fibonacci().getNumber(1));

}

And then we generalised our solutigast enoughto pass both of
these tests.

public int getNumber(int index) {
return index;

}

2 KI§ 6SQNB fagetd@ryuls) F@ Na Az (i L&A

spot a patternor generalise to a ruléom just one example. With
two or more examples, we can begin to generalise.

The simplest pattern that fits the first two tests is that the Fibonacci
number is the same as its index.

Notice how we documented the pattern using a parameterized test
that consolidated those two examples.

@Test
@Parameters ({ "0,0" , "1,1" }
public void firstTwoNumbersAreSameAsindex(int expected,

int index) {
assertEquals (expected,
new Fibonacci().getNumber(index));

}
The third Fibonacci number follows a different patteenthe first
two, implying a branch in the logic

@Test
public void thirdNumberlsOne() {
assertEquals (1, new Fibonacci().getNumber(2));

}

Many developers would, at this point, leap straight for:

CODEMANSHIP | TDB8|

public int getNumber(int index) {
if (index < 2)
return index;
return getNumber(index - 1) + getNumber(index - 2);

}

.dzi GKAA 62dzZ R 0S8 LINEB YihuthdgiBlep L (-
ASYSNIf azfdziazy FTNRBY 2dzad FTNRY

Instead, §GQa GNARFy3AdzZ I 6S (GKAA ySg
simplest possible solution to pass the third test.
public int getNumber(int index){
if (index < 2)
return index;
return 1;

}

Notice(i K G2 F2NJ AYRSES& 2F H 2N K
G tdSed ¢KFEiQa |ff S ySSR (2 R;
LI GGSNYZ YR ¢S OFyQil 3ofiySNI f A a
After a spot of refactoring to kalise the knowledge of how to get
CAo2yl OOA ydzYoSNER Ay GKS GSad O
failing test. How about the fourth Fibonacci number?

@Test

public void fourthNumberlsTwo() {
assertEquals (2, getFibonacciNumber(3));

}
{dz2NBfes G GKAE LRAYyGZ AdGithd® GAY
I Oldzr f e y2d ¢KSNBQa | aiAYLX SN
public int getNumber(int index){
if (index < 2)
return index;
return index - 1;
}

l'YR y26 A0Qa GAYS G2 NBTFOG2NI ;
these two examples of this new rule.

CODEMANSHIP | TDB9|

@Test
@Parameters ({ "1,2" , "2,3" })
public void thirdNumberOnlsindexMinusOne(int expected,
int index) {
assertEquals (expected, getFibonacciNumber(index));

}

2 KFGQ& 2 dzNJ tf Welljithe Fifth Kibohagcnurdb&rshas
an index of 4 and a value of 3, so our current code would actually
pass that test. But the sixth has an index and value both of 5, so
that would fail.

@Test
@Parameters ({ "1,2" , "2,3" , "55" })
public void thirdNumberOnlsindexMinusOne(int expected,

int index) {
assertEquals (expected, getFibonacciNumber(index));

}
The simplest solution that i pass all these tests is, in fact:

public int getNumber(int index){
if (index <2)
return index;
return getNumber(index - 1) + getNumber(index - 2);

}

We discoveredhis algorithm by taking baby steps and doing the
simplest thing with each step, generalising with each new test.

It took us two tests to discover the rule about the first two Fibonacci
number being the ame as their index. It took us three tests to
discover the rule about the third and above numbers being the sum
of the previous two.

ra + FAYlLIE adSLlx ¢S FTRR Iy aSR3

condition for negative indexes.

@Test(expected=lllegalArgumentException. class)
public void indexMustBePositivelnteger() {
getFibonacciNumber(-1);

}

The resulting tests read like a specification for thésee rules,
and provide good test assurance that the rules have been correctly

CODEMANSHIP | TDB0|

implemented. If we broke the code so that it breaks one of the
Nbzt Sasx GKSNBQa I @S Niwillmi2gdviRguOK | y
I @AGEHE SENI&@ 6FNYAYy3I YR YIF{AY
gone wrong

h¥ O2dzNES: ¢6S aly26é GKS ISy SN
about it in advance. Thinking about designs in advance is a good
thing. | highly recommed it!

.dzilz S@Sy (K2dzAK AGQa | I22R AR
idea tocode aheadA trivial example like the Fibonacci calculator
tests our discipline in not leaping ahe&at general solutions and
speculating about what the best design Maié.

With programming, the devil is in the detail. Triangulating brings
more focus to getting those details right. Start simple, take baby
steps, and generalisenly when you seea pattern.

TRIANGULATION PATINBR

Observant readers may have noticed tha¢th are loose patterns
to the way we generalise our solutions as we triangulate.

1 To pass a single test, we might need to do nothing more
than return the resulthe tests expects as a literal value.

9 To pass two tests that expect two different results, we
might generalise that literal value to a variable (or a
parameter).

1 When that value is accessed by more than one method (so
our implementation has to remember it), a variable might
become a field.

1 When avariable can have multiple values at the same time,
it can become a collection.

1 When that collection is a sequence that follows a rule, it
can become a loop; or a lambda expression that
generates the collection, applying the rule to every
element.

CODEMANSHIP | TD61|

la &2dz 3SG Y2NB SELISNA Sy ntives A G K
feel for these patterns of generalisation, learning to let the tests
guide your designs.

OBVIOUS IMPLEMENTBNISs ¢55 aD9! w{ ¢

Sometimes, though, triangulating is overkill. Imagine-#$¢ing a
simple function to add two numbers together, for ewple.
@Test

public void sumOfTwoPlusTwolsFour() {
assertEquals (4, Maths. sum(2,2), 0);
}

Would we go to the trouble of triangulating this, starting by just
NBGOdNYyAYy3a GKS €AGSNIf NBadzZ G nK
gained for something this straightforward, so instead we might just
implement thesimplest general solution.

public static double sum(double i, double j){
return i+ j;
}

Beware, though; it takes considerable experience to be able to
effectively judge when a design really is too trivial to take baby

steps. We recommend erring on the side of caution, especially
GKSY @2dzQNB NBfFA@Ste ySg (2 ¢5¢
judgement about how small your baby steps need to be.

Kent Beck, author dfestDriven Development By Examgdlkens it
to pulling a bucket of water up from a well using a ratchet and

pulley.

CODEMANSHIP | TDB2|

The teeth on the ratchet gear
lock it in position every time we
raise the bucket by a certain
amount. This means all our
STF2NI dzlJ G2 GKI
wasted if we let go of the rope.

The heavier the bucket of

g GSNE GKS avYlff:
the teeth to be, so we can pull it

up in shorter bursts of energy.

.dzi AF 6SQNB NI .
teaspoonful of water, we could

raise the bucket much faster

with a ratchet gear that has
larger teeth.

TDD is a bit like this. The tests lock our solution code in ptacee

R2y Qi NAxal o6lFadiy3a Ftft 2dz2NJ STF:
wrote.

¢tKS Y2NB O02YLX SE yR aKSI geé¢ GK
the smaller the steps we might want to take. The simpler and more
trivial it is, the bigger the steps we cannefortably take.

L 2dzNJ FoAfAGe (2 GaagAldOK 3ISENEBRE
more and more practice.

EXERCISE #8

Triangulate some code thagorts a set of playing cards into
ascending order (Aces count as 1). Start with the simplest example
you canthink of (e.g., what happens if we sort a single card?), and
discover a design, taking the smallest steps forward possible.

CODEMANSHIP | TDE8|

12. REFACTORING

Summary:

1 Refactoring is improving the internal design of software
without changing what it does

1 Refactorings are sma#lfomic code rewrites that preserve

behaviour

Many refactorings can be automated

Run the tests after evgrNB F I OG 2 NAy 3 (2 OK

broken

1 Refactorings are wetllefined and have names like
RenameExtract MethodExtract ClasandInline

9 Pay speciaattention to code duplication, as it can reveal
useful abstractions

1 In TDD, designs emerge through triangulation and
refactoring

f YSSLI NBTIFO02NAY3I dzyGAf &2 dzQNB

= =9

N

{2 FINE 6SQ0S 4SSy aSOSNIf IBELl YLX
GNBFFOG2NAYTE D

Refactoring ismproving the internal design of our software without
changing what it does

We refactor our code to:

9 make it easier to understand

1 make it simpler

1 remove duplication

1 localise the impact of making changes

More generallywe refactor the code to make éasier to change

CODEMANSHIP | TD&Y4|

The danger in changing code is that we might break the software.
Refactoring minimises this risk in 3 ways:

1. Refactorings aremall and atomic

The smaller the change, the less can go wrong. And if it does go
wrong, we want to be able to easily unda Refactorings
succeed or fail as a whole.

2. Refactoringpreserve behaviour

After each refactoring, we want the code to do exactly what it
did before. We can check that it does using automated tests

3. Often, refactoings can beautomated

Automated refactorings, which are supported to some extent
in most editors, help us by automatically updating the code so
that it should still work, and also by offering a singtepUndo

in case anything goes wrong

Think of your sorce codeas a data structur& RS 2 F & a G d:
classes, methods, parameters, variables, identifiers, statements,
expressions and so on.

A refactoring rewrites thi& a { wefhdké it easier to change in one
or more ways.

Very importantly, at the end o&ach refactoring, thecode still
works We check this bgunning ourtests.

L Girpdrtant to become familiar with the most commonly used
refactorings, and get practice at applying them to your code.

[Ssdo@k at some examples in Java using the popuipde IDE
(www.eclipse.org)

RENAME

To make its meaning clearer, we may wish to rename a class, a
method, a variable and other things that have names. When we
change the name of, say, a methdbat changebreaks all of the

CODEMANSHIP | TDE5|

code that calls that method. Sihe Rename refactoring has to
update all of the references so that the code still works.

@Test
public void findsIndexOfFibonacciMumber() {
assertEquals(expectedIndex, get(fibonacci));

¥

@Test

public void whenNumberNotFoundThenIndexIsMinusOne() {
assertEquals(-1, get(7));

}

@Test
public void cannotFindIndexOfNegativeNumber() {
assertEquals(-1, get(-1));

}

private int lnng tibonacci) {
if(fibon| Repame.. Alt+Shift+R

retu _

y Move... Alt+Shift+V
int inde Change Method Signature... Alt+Shift+C
int currl line.. Alt+Shift+]
long f =

In my editor, | select the thing | want to rename (in this case, a
method ambiguously calledet). | launch the contexsensitive
refactoring menu, and select tHeenamerefactoring.

CODEMANSHIP | TDB8|

@Test
public void findsIndexOfFibonaccilumber() {
assertEquals(expectedIndex, getIndexOf(fibonacci));

}

@Test
public void whenNumberiotFoundThenIndexIsMinusOne() {
assertEquals(-1, getIndex0f(7));

}

@Test
public void cannotFindIndexOfNegativeNumber() {
assertEquals(-1, getIndex0f(-1));

¥

private int ketIndex0fl(long f1bonacc1) {
l.F(.Fl O 90 Lol e T

rejﬁwter NeW name, press Enter to refactor = i

¥
int indexOfFibonacci = -1;
int currentIndex = 2;
long ¥ = 0@;

| can edit the method name in place in my editor. Notice how, as |

type the new name, calls tget() are automatically updated. After
I hit Enter, the automated refactoring will save my source files.

As soon as the refactoring is dodeun my tests to make sure it

KFayQid oNR1SYy (GKS O2RS®

CODEMANSHIP | TDBY|

& Package Explorer 'gfu JUnit &2 = 0B

SIS R
Finished after 0.016 seconds

Runs: 27/27 B Errors: 0 B Failures: 0
I
- &g FibTests [Runner: JUnit 4] (0.002 s)

—+ =

= Failure Trace IGIE

The method name makes more sense now, but | can still see
problems that will make this code harder to change.

[SG§Qa R2 FYy20KSNI NBFIFOG2NAyID
EXTRACT METHOD

e private int getIndexOf(leng fibonacci) {
if(fibonacci >= @ && fibonacci < 2){
return (int)fibonacci;

int indexOfFibonacci = -1;
Move... Alt+Shift+V

Change Methad Signature... Alt+Shift+C HEIENOE
Extract Method... Alt+Shift+M :Jng[J{eL,1L}));

Extract Interface...
Extract Superclass...
Use Supertype Where Possible... ndex;
Pull Up...
Push Down...

1) + sequence.get(currentIndex - 2);

Extract Class...
Introduce Parameter Object...
¥

CODEMANSHIP | TDE8|

ThegetindexOf()method does rather a lotand is difficult to read.
We can simplify things and make the code clearer by breaking the
method down.

| select a block of code that does a specific chunk of the work and
bring up the refactoring menu again.

int indexOfFibonacci = -1;
int currentIndex = 2;
long f = @;

List<long> sequence = new Arraylist<lLong>();
sequ =

whill =

Method name: | searchSequence|

Access modifier: () public () protected () default (®) private

Parameters:

Type Name Edit...

long fibonacci

[Declare thrown runtime exceptions
[] Generate method comment

Replace additional occurrences of statements with method

Method signature preview:

private int searchSequence(long fibonacci)

A dialogue pops up for thExtract Methodefactoring, prompting
me to give this new method a name. This is an opportunity to
convey what this block of code does, using the method name.

Notice how it automatically adds a parameter for a variable
fibonaccili KI i Qa RS Of I NBR 0 Sthas hbpassi KA &
GKAA @GFfdzS AyzZ 2NJ GKS O2RS 462yQ

It knows to return any data value that is referenced after this block
of code, too.

[SGQa O2YLX SGS GKA& NBFIOU2NAY3

CODEMANSHIP | TDB9|

private int getIndex0f(long fibonacci) {
if(fibonacci »= @ && fibonacci < 2){
return (int)fibonacci;

J

int indexOfFibonacci = searchSequence(fibonacci);

return indexOfFibonacci;

private int searchSequence(long fibonacci) {

int indexOfFibonacci = -1;
int currentIndex = 2;
long f = B;

List<Long> sequence = new ArraylList<Long>();
sequence.addAll(Arrays.aslist(new Long[]{@L,1L}));
while(f < fibonacci){
f = sequence.get(currentIndex - 1) + sequence.gg
if(f == fibonacci)

PSP a W ol - Y 2 T d

LYYSRAFGStes ¢S Ndzy GKS GSada a2
There are still issuethat might need addressinig our code First
of all, some lowhanging fruit.

INLINE

Inlining replaces a reference to a thing with the thing itself. For
example, we could inline the local variabledexOfFibonacci
0S0lFdzaS 6S R2y Qi NBIffe ySSR Al

CODEMANSHIP | TDEO|

J
int indexOfFibonacci = searchSequence(fibonacci);

return index{)Fthonacci;

} Rename... Alt+Shift+R
Move... Alt+5hift+V
private int Change Method Signature... Alt+Shift+C
int ind pxract Local Variable.. Alt+Shift+L
int cur Extract Constant...
long : -
List<lo Inline... Alt+Shift+l
sequenc Convert Local Variable to Field...

private int getIndexOf(long fibonacci) {
if(fibonacci »>= @ && fibonacci ¢ 2){
return (int)fibonacci;
¥
g l=carchSequence (fibonacci)p

Again, we run the tests immediately to check everything still works.
This is a habit you must get into tefactor safely.

There are 8ll more issues to addres®oes this code really belong
Ay | GSaid FAEGdAzZNB | G [lofvrd pkacetsblR o |
it can be more easily found and reused.

EXTRACT CLASS

Extract Class moves selected features of an existing class into their
own new class, and replaces them in the old code with an instance
of the new class.

ag& SRAGZ2NRA NBEHIQUI2KNAFS Y SHONER LBS
9EGNI OG /tl&aas a2 ¢6SQNB 3I2Ay3a i
make it happen.Many refactorings require us to perform a
sequence of smaller refactorings.

CODEMANSHIP | TDDL|

Our goal is te as much as possibtgkeeping the code working. So
gSQNB 3JI2Ay3 G2 R2 GKA&A AYy | ydzYo:
after each step.

CANRGEZ tSGQa d&asS GKS 9EGNI OG {
getindexOf(and searchSequenceif) a new class, from which the

test fixture will inherit so that it all dtiworks.

This new superclass will just be a stepping stdimately we

g2yQi 6lyd AG G2 0S5 I adZISNOf I aa
@RunWith(Parameterized.class)
public class FibonacciTests {

Repname... Alt+Shift+R
private £ yove.. Alt+Shift+V
private f

Extract Interface...

. Extract Superclass...
public . F1 Use Supertype Where Possible... jec
this.
this. Pull Up...

A dialog pops up prompting us to give this new superclass a name,
and to select the features we want to move into it.

CODEMANSHIP | TDERZ|

Extract Superclass

Select the members to extract to the new type.

Superclass name: | Fibonacci

Use the extracted class where possible
[]Use the extracted class in ‘instanceof’ expressions
v| Create necessary methods stubs in non-abstract subtypes of the extracted type

Types to extract a superclass from:

@ FibonacciTests - (default package) Add...

Specify actions for members:

Member Action Select All
[e whenNurmberNotFoundThenlndexllenus... Deselect All
[e cannotfFindIndexOfMegativeNumber()

[v] = getindexOf({long)

[v] & searchSequence(long)

Set Action...

2 members selected.

Inthh & AyadlyOoSs (KL Gc@dugh theExtractS y S
Superclasdialog has a lot more optionsso we just clickeinish

It warns us that the visibility afetindexOf(heed to be changed for

0KS &dzoOfFadaa G2 O2y ijusytdzBakelzara y 3
the code still works.

@Runkith(Parameterized.class)
public class FibonacciTests extends Fibonacci {

CODEMANSHIP | TDEB|

public class Fibonacci {

protected int getIndex0Of(long fibonacci) {
if(fibonacci »= 8 && fibonacci < 2){
return (int)fibonacci;

}
return searchSequence(fibonacci);
b
private int searchSequence({long fibonacci) {
int indexOfFibonacci = -1;
int currentIndex = 2;
long = 8;

List<lLong>» sequence = new Arraylist<lLong>();
sequence.addAl]l (Arrays.aslist(new Long[]{0L,1L})
while(f < fibonacci){

f = sequence.get(currentIndex - 1) + sequenc

if(f == fibonacci)

indexOfFibonacci = currentIndex;
sequence.add(f);
currentIndex++;

¥

return indexOfFibonacci;

Again, we run the tests at this point.

Nowthat we have dibonacctlass, we want to change the tests so
they invoke methods on an instance of that class, and not on the
superclass.

We can achieve this usifgnd/Replace

CODEMANSHIP | TDD4|

Eind: getindexOf(

Replace with: | new Fibonacci().getindexOf(

Direction Scope
(®) Forward (® All
() Backward () Selected lines

Options

[| Case sensitive [v] Wrap search
| |Whole word [_] Incremental
[|Regular expressions

Find Replace/Find

Replace Replace All

Close

We replace all the calls getindexOf(pn the superclass with calls
to the same method on a nelibonaccbbject.

CODEMANSHIP | TDDb|

@Test
public void findsIndexOfFibonacciNumber() {
agssertEqguals(expectedIndex, new Fibonacci().getIndexOf(fibonacci));

}

@Test

public void whenNumberNotFoundThenIndexIsMinusOne() {
assertEquals(-1, new Fibonacci().getIndex0f(7));

3

@Test

public void cannotFindIndexOfNegativeNumber() {
assertEquals(-1, new Fibonacci().getIndexOf(-1));

}

And run the tests again.

CAYylffeés G§KSNBQa FipdhacyTesiiRexteng @ f 2

Fibonacciso we can remove thatepping stone.

@RunWith(Parameterized.class)
public class FibonacciTests {

YR GKSyYyX @&S8SLJ @&2dz 3dz§aaSR
THE REFACTORING MENU

AGX w

The Eclipseditor offers a useful range of automated refactorings.

CODEMANSHIP | TDDSg|

Refactor | Navigate Search Project Run Window Help

Rename...
Move...

Change Method Signature...
Extract Method...

Extract Local Variable...
Extract Constant...

Inline...

Convert Local Variable to Field..

Convert Anonymous Class to Nested...

Move Type to New File...

Extract Superclass...

Extract Interface...

Use Supertype Where Possible...
Push Down...

Pull Up...

Extract Class...
Introduce Parameter Object...

Introduce Indirection...
Introduce Factory...
Introduce Parameter...
Encapsulate Field...

Generalize Declared Type..
Infer Generic Type Arguments...

Migrate JAR File...
Create Script...
Apply Script...
History...

Alt+5hift+R
Alt+Shift+V

Alt+5hift+C
Alt+5hift+M
Alt+5hift+L

Alt+Shift+

e
F 3

in
in

b

EX

=
at

);

id
tH

id

CODEMANSHIP | TDDY|

Support for automated refactoringsriesfrom editor to editor and
fly3dz 3S G2 f Hyhstesirdl&hduagesiti@atihavé & LIA O
compiletime type checking than in dynamic languages, because

in some refaatrings- the tool needs to know what types of objects

are involved.

In scripting languages like JavaScript and Ruby, progranmmays
havetoledly) K2g¢g (G2 R2 a2YS NBTIFIOG2NRY
to be especially disciplined these cases

DUPLICATION & EMERGBEESIGN

lf 0K2dAK AGQa y20 Fa AYLRNIFYyG |
duplication in our code including our test code; offers wseful

clues about what might be a good design for our solutibnis is
becausehe opposite of duplication is reuse

When we see two blocks of code that are almost the same, we can
extract a parameterised method that performs the common logic.
When we se two classes that are very similar, we can extract a
common base class. Or if they do similar things, but in different
ways, we can extract a common interface.

Duplication is often a good thread to pull on, as it can reveal
abstractions that will make outesigns better.

For this reason, many people recommend weéactor to remove
duplicationas the third step in the TDD cycle.

More generally, a design is revealed to us as we refactor. A method
may be too long or doing too many things, so we break itriq i
multiple methods. A class may be getting too big or have too many
responsibilities, so we split it up into new classes.

Starting from the single simplest solution, a complex design can
emerge through the process of triangulation and refactoring. The
aim is to disover the design that will pass the testad be easy to
change.

CODEMANSHIP | TDD8|

WHEN ARE WE DONE?

In our Fibonacci example, we still have issues we might want to
address left in our code. TrgetindexOf(method is pretty long,

and does a lot. We could breakdiown by exracting the different
pieces of work into their own private helper methods. Also, our test
fixture mixes a single parameterised test with several ordinary tests
for edge cases. The edge case tests are run unnecessarily for every
parameterisedtest case, leaving potential confusion about how
many tests there really are.

When it comes to the quality of our code, we often have the best
of intentions to go back andodeissueghat might get in our way
later.

Inspection of hundreds of code baseswever, teaches us thag
nine times out of teng we never actually get around to fitxing
problems we leave behind

For that reason, | strongly recommend that you refactor until

@ 2dzQNB K| LILJR f Sl @ekayise yoil ied proadyS |
will leawe it like thatforever.

That makes the third step in the TDD cycle extremely important. It
reminds us to clean up our code to make it as readable, as simple,

as free of duplication and as modular as we can before moving on
to the next failing test.

EXERGE #9

Look through the code you wrote for earlier exercises in this book
F2N) I yeadKAYy3a GKIF G @ 2dadéesouyhdki ™ n
could be made clearer, methods that do more than one thing,
nested IF statements, and so on.

Refactor the code until youconfident that it will be easy to
understand and easy to change.

CODEMANSHIP | TDD9|

Explore the refactoring menu in your editor and try each
automated refactoring works on a copy of your code.

'YR 5hbQ¢ ChwD9¢ ¢h Y99t w! bbLbD

CODEMANSHIP | TD80|

13. DESIGNPRINCIPLES

Summary:

1 A Simp¢ Design (in order of priority):
0 Works (i.e., passes all the tests)
0 Is easy to understand
0 Has minimal duplication
0 Is as simple as possible
§ 58aAr3dy OflraasSa GKIFG ¢Stfx 52
detail as possible
1 Give methods and classes a singésponsibility, so they
offer more possibilities for combinations and reuse
1 Compose objects from the outside, using dependency
injection, to offer greater flexibility for design and testing
1 Expose clienspecific interfaces to hide methods that
clientcodeR2 Say Qi ySSR G2 dza$s
1 Use contract tests to ensure different implementations of
the same abstraction fulfil the contract of their suggpe

Ly LINB@A2dza OKFLIWGSNBERE 6SQ@S (2d
of our code that will make it easier to change, we can keep
adding new tests and new features, and sustain the pace of
development for longer.

2 SONB 3I2Ay3 (2 R¢ §doddesdgf G KS (i KIRE
important enough to warrant a chapter all of their own.

SIMPLE DESIGN

Simple Design, also polauised by Kent Beck, is a set of design
principles that developers can apply to most any kind of software.

CODEMANSHIP | TD81|

Rather than having to learn a whole encyclopaedia of design rules
and desgn patterns, Simple Design sets jimir goals in order of
importance.

1. The code works

2. The codas easy to understand
3. The code haminimalduplication
4. The codds as simple as possible

THE CODE WORKS

Most important of all is that the code works. We check that it does
08 NUzyyAy3a 2dzNJ G§Sadad hafispkality R2 S &y
number one.

THE CODE IS EASYUNDERSTAND

2 KSY 6SQONB KIFLILR GKS O2RS g2N}la:z
K2g Sltae Ad Aa (2 dzyRSNAGIFYR® L
between 5080% of our time just reading code. Time invested in
makingthe code clearer is almost always profitable later.

THE CODE HAS MINIMAUPLICATION

LT 6SQNB aldAaFASR GKFG GKS O2RS
duplication. The mantra to remember here&52 y Qi wS LIS
(D.R.Y.)When we have to change dupliea code, we have to

make that change multiple times.

One exception to D.R.Y. is when a bit of duplication makes the code
easier to understand. In our test fixtures, for example, | left in some
duplicationg separate test methods for cases that could haeen
incorporated into an existing parameterised tetb make it easier

to see this was a differemtile being tested, and not just different
example of the samaule.

THE CODE IS AS SIMRIS POSSIBLE

Simpler designs are quicker to get working, easieunderstand,
and less likely to go wrong. For all these reasons, TDD recommends
we do the simplest thing possible that will pass our tests.

CODEMANSHIP | TD82|

Again, the exception is whesimplicity conflicts with our higher
priority design goals. Sometimes the simplest2 f dzii A 2 v
necessarily the easiest to understand, for example. On occasion, it
may be better to solve a problem a longer way, if that longer way
can beunderstoodfaster.

¢9[[X 5hbQ¢ ! {Y

The four principles of Simple Design take us a long way towards a
322R RSaA3dys gKSYy (GKS@QNB | LILX
grows.

dzi {AYLX S 5SaAidy R
02 OKI y3aAy3 2dzNJ O
dependencies

SayQi RA
R i

2Sa

2RS GKI G
Consider a class that calculates insurance prersifon motorists.
To decide what premiums to apply it needs to know the age of the
motorist, their gender (men tend to have more accidents), how
f2y3 (KSe@ Q@S od&dhéw Rahpdints/tiey Hake3d | €
2y GKSANI RNAGSNRA tAOSyasSo

CODEMANSHIP | TD88|

public class InsuranceCalculator {
private Motorist motorist

public InsuranceCalculator(Motorist motorist) {

this . motorist = motorist;
}
public double calculatePremium(double carValue) {
License license = motorist .getLicense();
double premiumPercent = 0;
premiumPercent +=
calculateAgePremium(
calculateAge(motorist .getDateOfBirth()));
premiumPercent +=
calculateGenderPremium(motorist .getGender());
int yearsOfExperience =
calculateExperience(license.getDatelssued());
premiumPercent +=
calculateExperiencePremium(yearsOfExperience);
premiumPercent +=
calculatePointsPremium(license.getPoints());
return carValue * premiumPercent;
}

To get these pieces of information, it has to ddktorist and
Licensefor them. [S Qa @a iatdzclionsd&ween our
objectsusing a UML sequence diagram:

CODEMANSHIP | TD84|

: InsuranceQuote | | : Motorist | | : License

calculatePremiurgcarValug

getLicens@

getDateOfBirtif)

getGendef)

getDatelssue)

getPointg)

BecausensuranceQuotes doing all the work, buMotorist and
Licensehave all the data, this design creates a lot of {mwel
couplingbetween our objects.

The more objects know about each other, the more likely it is that
a change to one object will affect others. Chandimgensemight
break InsuranceQuotewhich might inturn break any code that
depends orinsuranceQuote

Another goal of good design islticalise the impact of chang@e
can achieve this by, as much as possible, internalising dependencies
within classeswhich reduceghe coupling between them.

Code thaty SSRa (2 1y26 | Y2i2NRadQ:
packaged where that data is. Code that needs to know how many
LR2AYGa GKSNB IINB 2y | Y2G2NRraidQ

that points data is.

More generallyput the work where the data is

[S Gefactor d¥ code to reducene coupling between the classes,
by putting our calculations in the same classes as the data they use.

CODEMANSHIP | TD85|

public class InsuranceCalculator {
private Motorist motorist

public InsuranceCalculator(Motorist motorist) {
this . motorist = motorist;
}

public double calculatePremium(double carValue) {
return motorist .calculatePremium(carValue);
}

}

Instead of asking for the datésuranceQuot@ow delegates the
work to Motorist.

public class Motorist {

private final String dateOfBirth
private final ~ Gender gender ;
private final License license ;

public Motorist(String dateOfBirth,
Gender gender,
License license) {

this . dateOfBirth = dateOfBirth;
this . gender =gender;
this . license =license;

}

public double calculatePremium(double carValue) {
return calculateMotoristPremium(carValue) +
license .calculatePremium(carValue);

}
private double calculateMotoristPremium(double carValue) {
double premiumPercent = calculateAgePremium()
+ calculate Gender Premium ();
return premiumPercent * carValue;
}

Motorist does the work relating to what it knowdateOfBirthand
gender It delegates the rest of the work toicensebecause that
class has the rest of the data.

CODEMANSHIP | TD86|

public class License {

private int points
private final String datelssued ;

public License(String datelssued){
this . datelssued = datelssued;
}

double calculatePremium(double carValue) {
return calculateExperiencePremium(carValue) +
calculatePointsPremium(carValue);

}

Instead of asking Motorist and License for their data,
InsuranceQuotél Sf f & GKSY G2 R2 (KS 62N
GKA&a adGetsS 2F RSarAdy Aa az2ySiay
When we visualise the interactions between the different objects
after this refactoring, itdoks like this:

: InsuranceQuote | | : Motorist | | : License

calculatePremiurgtarValug

calculatePremiurgtarValug

calculatePremiurftarValug

Just at a glance, we can see there are far fewer object couplings.
b20dS GKIFIGZ 0S0OFdzaS 6SQNB AKF NRY
thosegetter methodsany more

This design principle goes by several names, incluthta hiding

and encapsulation All you need to remember is that the less
objects know about each other, the better.

SINGLE RESPONSIBALIT

Consider a method that credits a bank account:

CODEMANSHIP | TD87|

public void credit(double amount){
this . balance +=amount;
SimpleDateFormat sdfDate =
new SimpleDateFormat("yyyy - MMdd HH:mm:ss");

Date now = new Date();
String dateTime = sdfDate.format(now);
String creditXml = "<credit>" +
<account>" + accountNumber + "</account>" +
<amount>" +amount+ "</amount>" +
<datetime>" + dateTime + "</dateTime>" +
"</credit>"

AccountLogger. log (creditXml);
rewardPoints += Math. floor (amount/100);

}
This method does whole bunch of stuff.

1 Adds the anount to the balance

1 Formats the current date & time

1 Creates an XML string that represents this transaction for
logging

9 Calculates and adds reward points at 1% of the credit
amount

Not only does it make this method harder to understand, but what
happens ifwe want to format the current date and time for some
other purpose? What happens if we want to calculate reward
points for other kinds of transactions?

As it standscredit()is an allor-y 2 G KAy 3 | FFI A N
option to reuse any of its logicyhitself, and this can present a
barrier to change.
¢2 0SGGSNI
gl e&a Oly
al! ./ 5¢0

| 26 YlIye RAFTFSNBYyG ol ea Cloy
WecanY {S a! . €3 a/ 563 a! ./ 5¢& |
l 26 Ylye RAFFSNBYyU o6 &a
Sixty four

ol
> < .

O

oy

CODEMANSHIP | TD88|

2

< ¢

S

S

SELX IAYyS KSNBQa | (K2dzE
S O2Y0AyGnly oS LIDONR Vi &

C
a

o)

@ ONBFlAYy3a a! ./ 5¢ Ayid2 a! £z a.
sixty four times as many possible combinations of letters.

Likewise, by breakingredit() down into four separate methods,
each with one distinct job, we create many more opportunities to
create new logic by combining one or all of those methods.
public void credit(double amount){
updateBalance(amount);
String dateTime = formatCurrentDateTime();

AccountLogger. log (serialize(amount, dateTime));
rewardPoints += calculateRewardPoints(amount);

}

credit()is now what we call aomposed methgdhat is, a method
composed of calls to other methods. The method names tell the
story of what work is being done, but the actual work is delegated
to these new methods.

This makesredit()easier to understand, and it also means that we
can write new code reusg methods like
formatCurrentDate Time(perializ€) and calculateRewardPoints()

We could also extend our account class, and overtidese
individual methods withouhaving to change the code aredit()
This refactored design opens up many new possésl

The same principle applies at the class level; should we have to use
an account every time we want to format the current date and
time? That smacks a little of buying a Mercedes just to use the
cigarette lighter.

And if we wanted to change the formaf the current date and
time, should we have to edit and risk breaking; the account
class? There will be other classes depending on it. It might break
them, too. Better, surely, for that formatting code to go in its own
class, where we can change ¥ ibself.

CODEMANSHIP | TD89|

public void credit(double amount){
updateBalance(amount);
String dateTime =
new DateTimeFormatter().formatCurrentDateTime();
AccountLogger. log (serialize(amount, dateTime));
rewardPoints += calculateRewardPoints(amount);

}
2 KAt S 6SQNB | o2dzi AGEZ akKz2dA R GKS
creatingthe XML string? A Ay X A0Qa FT2NBaSSIof
the XML format independently of how the account works. tBat,
too, belongdn its own class.
public void credit(double amount){
updateBalance(amount);

String dateTime =
new DateTimeFormatter().formatCurrentDateTime();

AccountLogger. log (

new XmiSerializer(). serialize(this,
amount,
dateTime));
rewardPoints += calculateRewardPoints(amount);

}

| can also see us needing to change how reward points are
OF t Odzf F iSR AYyRSLISYyRSyiGte 2F K2g
extract a class for that, too.

public void credit(double amount){
updateBalance(amount);
String dateTime =
new DateTimeFormatter().formatCurrentDateTime();

AccountLogger. log (
new XmiSerializer(). serialize(this,
amount,
dateTime));

rewardPoints +=
new RewardPointsCalculator().calculate(amount);
}

Extracting theseseparate responsibilities into their own classes
gives us more options for reusing and extending our code. For
example, if we wanted to, we could packdgate TimeFormattein

its own library and reuse @n other projects.

CODEMANSHIP | TD80|

SWAPPABILITY & DEPENCY INJEON

Splittingcredit()into separate methods, and then moving some of
those methods into new classe&seach with a distinct jolg, has
bought us considerably more flexibility to keep evolving our design.

But we need to go further to buy us the kind of fiexi € A 1 & & ¢
I32Ay3 G2 ySSR fFTGiSNE a gSQff R

What happens when we want to use different daime formats

for different kinds of output? What happens when we want to
represent our credit transaction in differemeport formats, like
CSV or HTML? What happens when we want to calculate reward
points differently in different countries?

¢t KSNBQa y2 SlBankAccounttb usié 2 diffefeit
implementation of DateTimeFormatter XmlSerializer or
RewardPointSalculator

Imagine we hve two different implementations of a
DateTimeFormattenterface, one for US date formats and one for
the UK.

public interface DateTimeFormatter {

public abstract String formatCurrentDateTime();

}

Similarly, imagine we have a US reward points calculator and a UK
calculator that both implement aRewardPmtsCalculator
interface.

public interface RewardPointsCalculator {
public abstract double calculate(double amount);

}

Finally, imagine we have two ways of representing a credit
transaction: as XML and as HTML, both of which implement a
Serializeinterface.

CODEMANSHIP | TD81|

public interface Serializer {

public abstract String serialize(
BankAccount acccount,
double amount,
String dateTime);

}

How about, insted of instantiating these objects inside
BankAccountwe pass them into the constructor?

public class BankAccount{

private double balance ;

private final String accountNumber ;

private int rewardPoints

private final DateTimeFormatter dateTimeFormatter

private final Serializer serializer ;

private final RewardPointsCalculator rewardPointsCalculator ;

public BankAccount(String accountNumber,
DateTimeFormatter dateTimeFormatter,
Serializer serializer,

RewardPointsCalculator rewardPointsCalculator){
this . accountNumber = accountNumber;
this . dateTimeFormatter = dateTimeFormatter;
this . serializer = serializer;
this . rewardPointsCalculator = rewardPointsCalculator;
}
public void credit(double amount){
updateBalance(amount);
String dateTime =
dateTimeFormatter .formatCurrentDateTime();
AccountLogger. log (
serializer .serialize(this, amount, dateTime));
rewardPoints += rewardPointsCalculator .calculate(amount);
}

BankAccounis now composed from the outside by whichever code

calls the constructor. If wabstractthe classes it collaborates \rit
bindingBankAccounto our pure interfacesit becomes possible to

vary BankAccourd O2Y LR AAGA2Y Reyl YAOL §
different implementations.

CODEMANSHIP | TD82|

BankAccount accountUS = new BankAccount("12345678" ,
new USDateTimeFormatter(),
new HtmlSerializer(),
new USRewardPointsCalculator());

BankAccount accountUK = new BankAccount("23456789" ,
new UKDateTimeFormatter(),
new XmiSerializer(),
new UKRewardPointsCalculator());

When we compose objects from the outsijdey passing their
collaborators in to the constructor or as method parameters, we
call thatdependency injectiaon

We now have the ability to swap collaborators easily, and this gives
us even greater flexibility for future changes.

l'a 6SQfft aSS TesyDoibies a0 KomesirSvby 2 v
useful for writing fastunning automated tests by allowing us to

test our code against pretend versions of things like database
connections and web service calls.

Cl'Y9 L¢ WEUT ,h! atly

It also allows us to defer thinking about the agsof other parts of
2dzNJ a2F G461 NB 6KAES 6S T2wddag 2 Y
ond 9d3IdT t SNKI LA 6S R2y Qi 6 yi
are calculated. We can inject a placeholder for a calculator and
carry on testing credit()

CLIENTSPEC-IC INTERFACES

The less objects in our software know about each other, the better.
la ¢St f a4 KARAY3I AYOGSNYI f FSIH
Ffa2 ySSR (2 KARS SEGSNyYylLf ¥FSI
use.

To illustrate, look at this codeom a community video library.

CODEMANSHIP | TD88|

public class Library {
private final List< VideoTitle > titles ;

public Library(){
titles = new ArrayList<>();
}

public boolean hasTitle(String name){
for (VideoTitle title : tittes) {
if (title.getName().equals(name)){
return true ;
}

}

return false ;

}

public void add(VideoTitle title){
titles .add(title);
}

}
public class VideoStats {

private final VideoTitle title

public VideoStats(VideoTitle title){
this . title = title;
}

public double averageRating(){
List<Rating> ratings = title .getRatings();
double totalRating = 0;
for (Rating rating : ratings) {
totalRating += rating.getValue();

return totalRating/ratings.size();

}
}

Both Libraryand VideoStatause VideoTitle but they use different
methods of it.Libraryjust needs to know the name of the title,
while VideoStatgust needs to access its ratings.

If we decide to change the details of either of these methods of
VideoTitle then both clients will be affected.

CODEMANSHIP | TD®4|

2S OFly KARS YSGK2Ra GKIFG Of ASyid

the interface, creating cliergpecific interfaces folibrary and
VideoStatghat only expose the methods they need.

public class VideoTitle implements Named, Rated {

private final String name;
private final List<Rating> ratings

public VideoTitle(String name){
this . name = name;
this .ratings = new ArrayList<>();

}

@Override

public String getName() {
return name;

}

@Override

public List<Rating> getRatings() {
return ratings

}

public void rate(int value){
ratings .add(new Rating(value));
}

}

Note that the names of these new interfaces reflect tiode the
objects play with respect to each cliefithese are not the names
of athing<, likeLibraryandVideoTitle

Now we can refactorLibraryand VideoStatsso theydepend only
on the interfaces they require.

CODEMANSHIP | TD85|

public class Library {
private final List<Named> titles

public Library(){
titles = new ArrayList<>();
}

public boolean hasTitle(String name){
for (Named title : titles) {
if (title.getName().equals(name)){
return true ;
}

}

return false ;

}

public void add(Named title){
tittes .add(title);
}

}
public class VideoStats {

private final Rated title

public VideoStats(Rated title){
this .rated =rated;
}

public double averageRating(){
List<Rating> ratings = title .getRatings();
double totalRating = 0;
for (Rating rating : ratings) {
totalRating += rating.getValue();

return totalRating/ratings.size();

}
}

b2GAOS GKFd ¢S RARsa®jion thgRafedzRS
interface. Although you might think it makes sense to include it,
based2y (GKS yIYSZ Ay FIVidéoStatdo BeNB Q &
exposed to it. Some other client uses that method, anaié() is

the only method it uses, we could again create a clsgecific

interface called, sayRateable
CODEMANSHIP | TD88|

POLYMORPHISM & COMRTH TESNG

When our objects implement abstractions, like pure interfaces, or
extend existing classes and overritteir YSG K2 Ra> G KSN
thing we need to be mindful of that they fulfil the original
contracts of their supetypes.

For example, there are mamljfferent ways we could sort an array

of numbers ranging from the brute force method of looping
GKNRdzZAK GKS NN} @& dzydAf 6S TFTAYF
sorting algorithms like Bubble Sort aitsertion Sort.

But, however we do it, the end resutiust be the same.

public abstract class Sort {
public abstract int [] sortAsc(int []input);

void swap(int [] input, int index1, int index2) {
int first = inputfindex1];
int second = input[index2];
input[index1] = second;
input[index2] = first;
}
}

In this design, we have an abstract base class for sorting arrays of
integers.Imagine we started by testriving an implementation of
Bubble Sort, and then moved on to an implementation of Insertion
Sort, and extracted a common superclass with the shase@p()
method and an abstractortAsc(method they each override.

CODEMANSHIP | TD®Y7|

public class BubbleSort extends Sort{

@Override
public int [] sortAsc(int [] input) {
boolean sorted = false ;
while (!sorted){
sorted = true ;
for (int i=0;i< input. length - 1;i++){

if (input[i] > input[i+1])}{
swap(input, i, i+1);

sorted = false ;
}
}
} _
return input;
}
}
public class InsertionSort extends Sort {
@Override
public int [] sortAsc(int []input) {
for (int i=0;i< input. length - 1;i++){
for (int j=i+1;j>0;j - X
if (input[j] < input[j - 10
swap(input, j, j -1);
}
} .
return input;
}
}

After refactoring the duplication between these two classes, we
shouldalso refactor duplicationdétween their test fixtures. So we
end up extracting a commadest base class

CODEMANSHIP | TD88|

@RunWith(JUnitParamsRunner. class)
public abstract class SortTests {

private Object data() {
return new Object[][{

{new int [}{1}},
{new int [){2,1}},
{new int [}{3,2,1}},
{new int [}{2,3,1}},
{new int [|{5,2,3,4,1}},
{new int [{2,1,2,3}},
{new int [{12,2,6,1,7,6,13,0}}

¥
}

@Test
@Parameters (method= "data")
public void arraylsSortedinAscendingOrder(int [] input) {
int [] output = createSort().sortAsc(input);
assertThat (Arrays. asList (output),
containsinAnyOrder (input));
for (int i=0;i<output. length - 1;i++){
assertThat (output[i],
is (lessThanOrEqualTo (output[i + 1])));
}
}

abstract ~ Sort createSort();
}

Note the abstract methodreateSort()this is a factory method for
instantiating sorting implementations that we override in the test
fixtures that extendSortTests

CODEMANSHIP | TD89|

public class BubbleSortTests

@Override

protected Sort createSort() {
return new BubbleSort();

}

}

public class InsertionSortTests

@Override

protected Sort createSort() {
return new InsertionSort();

}

}

extends SortTests {

extends SortTests {

The tests irSortTestgffectively define an abstract contract that all
sorting implementations must satisfy, no matter how they work
internally. This test design technique is therefore sometimes

referred to ascontract testing

CODEMANSHIP | TDIDOP

EXERCISE #10

Testdrive some code that manages the stock and orders of a CD
warehouse. Customers can buy CDs, searching on the title and the
artist. Record labels send batches of CDs to the warehouse. Keep a
stock couniof how many copies of each title are in the warehouse.
Customers can only order titles that are in stock. Use dependency
injection to fake credit card payment processing, so we can get on
with our CD warehouse design without worrying about how that
will bedone.

/| dZati2YSNAR OlFy tSI@S NBGASsa T2N
warehouse, which gives each title an integer rating fromh@ and

the text of their review if they want to say more.

ra ¢Sttt Fa LIXteay3a Ftf 2F GKS
make sure your code is:

Working

Easy to understand
Has minimal duplication
Is as simple as possible

XI'yR A& YIRS FTNRY OflaasSa GKFGyY
¢Sttt R2y Qi I aj

Have one distinct responsibility

Can be composed from the outside

Expose clienspecific interfaces
Use cottract tests for shared abstractions

=A =4 -4 =9

= =4 =4 -4 A

CODEMANSHIP | TDIDOL

14.

TEST DOUBLES

Summary:

T

1

=a =9

¢Sal R2dzoftSa NS 202S00Ga dzaSR
thing

They can help us write fastinning tests by decoupling

from external dependencies like databases and web
services

Theycanhelpi RSTFSNJ AYLX SYSy Gl GA2y
WiAt 6S YIF1S AGE

They can help make tests that depend on changing or
random data repeatable

Stubs are test doubles that provide test data

Mocks are test doubles that allow us to test object
interactionsand held dza G2 RSaA3dIy 206250
Ask

OverNBf A yOS 2y Y201 202S00G ¥NI
tightly-coupled design

Dummies are test doubles that allow the test to compile

YR NMzyZ odzi I NBSyQd dzaSR

Test doubles should implement interfaces that we itoh

to protect our application code from external
dependencies

Whether a test double is a stub, a mock or a dummy
RSLISYyRa 2y K2g AGQa dzaSRI y2i

¢CKSNE NS 2Fd0Sy dAYSaz 6KSYy 6SQN
we need to use an objedhat ¢ for a number of possible reasogs
is not the real thing.

It could be

CODEMANSHIP | TDIDOR

9 For performance reasons (e.g., connecting to an external
service would not be desirable in a suite of fastning
unit tests.)
9 Forcost reasons (e.g., requiring Oracle license use a
database in a test.)
f Becausehe type of objectg S ¢ yi G2 dzaS R
SEAaG &S84 oeacl (1S AlG wirat ez2d
f Becauss S 1y2¢6 Al 62yQG 0SS dzaSR
1 Because the object in question can only exist running inside
a container procesdikethe HTTP context af web server.
1 To make tests repeatable when object behaviour might
G NE 6Sd3dx ISGGAY3T G2RI &Qa
Test doubles come in several flavours:

9 Stubsg objects that supply test data

1 Mocksc objects that require interactions to happen

1 Fakesc objects that exhibit all the behaviour of the real
thing (e.g., an inmemory relational database)

f Dummiesc202S0Ga GKIG FNByQl dza§
to compile and run the test

1 Spies¢ objects that remember when their methods are
called, sove can query that in our tests

Ly ¢553 &aiddzmaszs Y2014a FyR RdzYYA
explore their use in this chapter.

STUBS

A stub is a test double that presents an expected interface to our
class under test, and has a testpecific implementation hat
NBlOdzNya RFEGF GKFEG gAff 0SS dza SR
Aa G2 LINPOARS (GSad RFEOGlI® LYy GKI
of the setup for a test.

CODEMANSHIP | TDIDOB

public class TradeQuoteTests {

@Test
public void tradePricelsStockPriceTimesQuantity() {
StockPricer pricer = new StockPricerStub(10);
TradeQuote trade = new TradeQuote(pricer);
assertEquals (1000, trade.quote(AXd , 100

}
}

In this test, we want to check that a quote faistock market trade
is calculated correctly. OdradeQuotebject will get a price from
a StockPricer When the software is in production, an
implementation of theStockPricemterface would connect to an
external web service. For the purposes of astf though, we write
our own testspecific implementation that returns a price of 10.

Note the use of dependency injection here to plug BickPricer
stub into theTradeQuoteobject (this is a great illustration of the
kind of flexibility we get by congsing objects from the outside).

Internally, TradeQuotedepends only on the interface, and knows
nothing about the stub.

public class TradeQuote {
private final StockPricer pricer

public TradeQuote(StockPricer pricer) {

this . pricer = pricer;

}

public double quote(String stock, int quantity) {
return pricer .getPrice(stock) * quantity;

}

}

Notice also how | passed the test data value into the constructor of

my stub, rather than hardcodih A G0 Ay G2 GKS &ddzm Q3
LQ@S R2yS GKA&a F2N) 62 NBIFaz2yarT
value in the actual test code, making it easier to understand.
Secondly, | can reuse this stub implementation with different
values, meaning less codeplication.

CODEMANSHIP | TDIDO@

¢KS aidzoQa AYLI SYSydl GA2y A& &A
public class StockPricerStub implements StockPricer {
private final double price ;

public StockPricerStub(double price) {
this . price = price;
}

@Override

public double getPrice(String stock) {
return price

}

}

Sometimes, instead of returning test data, we might want a stub to
throw an exception to test how our object handles it.
@Test(expected=InvalidTradeException. class)

public void tradeNotValidlfStockNotFound()
throws InvalidTradeException {

StockPricer pricer = new StockNotFoundStockPricerStub();
TradeQuote trade = new TradeQuote(pricer);
assertEquals (1000, trade.quote(dAXo , 100), 0

}

When the stubthrows a StockNotFoundExceptipiiradeQuote
should catch that and throw amvalidTradeException

public class StockNotFoundStockPricerStub implements
StockPricer {

@Override
public double getPrice(String stock)
throws StockNotFoundException {
throw new StockNotFoundException(stock);

}
}
Ly 020K GSadasz L dzAaASR I ada20] a:
symbol we use, as our stubs will return the data want them to
regardless.

Two important things to remember when using stubs:

1. Do not test the stub! Our goals here is to test the object

that uses the data the stub provides
CODEMANSHIP | TDIDOB

2. Stubs are test code

Stubs can also be uséd fix test data that would usually elmge

when using the real objectt A { S | LISnhaEirgyyh@test | 3 S
repeatable
@Test
public void driverUnder25PaysFivePercentPremium() {
Motorist motorist = new Motorist("01/01/1900"

Gender. MALE

null

new AgeCalculatorStub(24));
assertEquals (0.05, motorist.calculateAgePremium(), 0);

}

CODEMANSHIP | TDIDOB

public class Motorist {

private final String dateOfBirth

private final Gender gender ;

private final DriversLicense license ;
private final AgeCalculator ageCalculator

public Motorist(String dateOfBirth,
Gender gender,
DriversLicense license,
AgeCalculator ageCalculator) {

this . dateOfBirth = dateOfBirth;

this . gender = gender;

this . license =license;

this . ageCalculator = ageCalculator;

}

private double calculateAgePremium() {
int age = ageCalculator .calculateAge(dateOfBirth);
double agePremium;
if (age< 25)
agePremium = 0.05;
} else
if (age > 701
agePremium = 0.04;
} else {
agePremium = 0.03;

}
return agePremium;
}
Ly 2dzNJ 6SaaGz Al YIF1Sa y2 RATFTFSN
date of birthtobe. Hisagewif | f gl &@8a 06S a O f Od:

MOCK OBJECTS

a201a 2FGSy 3SG YAESR dzlJ 6AGK &
developers use mock object frameworks to create stubs). The
terms are routinely used interchangeably, even by renowned
experts in TDD.

ButstrA OGf & aLISIF1Ay3as I Y201 AayQi

to provide test data. The purpose of a mock is to allow us to write

tests that will fail when an interaction between our object under
CODEMANSHIP | TDDO

G6Sald FYyR 2yS 2F Ada O2ff wes\NI 2 N
it should.

@Test
public void tellsAuditToLogQuote() throws Exception {
int quantity = 100;
String stock = X"
StockPricer pricer = new StockPricerStub(10);
Audit audit = mock(Audit. class);

double quotedPrice =
new TradeQuote(pricer, audit)
.quote(stock, quantity);
verify (audit).log(stock , quantity , quotedPrice);

}
Suppose we get a new requirement for dtradeQuotdo log each
guote generated for audit purposes.
2§ R2y Qi styld (G2 KFE@S (2 AyalLlsSo
TradeQuotealled thelog()method. Andf logs are written to a file
2N+ RFEGFolaSsy ¢ SradQubtotdkidthiee R2 Yy
real thing in our fastunning unit test.
We can mock Audit ¢ in this example usingMockito
(www.mockito.org ¢ and then verify that the interaction took

place.Before we write the code to pass this interaction test, we run
the test to see that our mock assertion (i.eerify) fails.

CODEMANSHIP | TDIDOB

godunit 2 & G e"RE| QB m E - Y= O
Finished after 0.118 seconds

Runs: 1/1 8 Errors: 0 B Failures: 1
|
(e tellsAuditToLlogQuote [Runner: JUnit 4] (0.107 s)

i'II I*

= Failure Trace

0 Wanted but not invoked:
auditlog("X", 100, 1000.0);

= -> at TradeQuoteTests.tellsAuditToLogQuote(TradeQuoteTests java:31)
Actually, there were zero interactions with this mock.

= at TradeQuoteTests.tellsAuditToLogQuote(TradeQuoteTests java:31)

To pass the testJradeQuoteneeds to calllog() with the right
parameter values.

public double quote(String stock, int quantity)
throws InvalidTradeException {
try {
double quotedPrice =
pricer .getPrice(stock) * quantity;
audit .log(stock, quantity, quotedPrice);
return quotedPerice;
} catch (StockNotFoundException e) {
throw new InvalidTradeException(e);
}
} e z z
Note that, although we used theStockPricea U1 dz0 2 U KA & C
uKS

Fo2dzi GKS OFtOdzZ I GAz2zy 27F lj
TradeQuoteells Auditto log the quote.

CKAY]l oFO]l G2 GKS OKILIWISNI 2y RS
Using traditional test assgons, we would have needed to provide

a way for our test to query the internal state Atiditto check if the

log had been written. This breaks encapsulation unnecessarily.

CODEMANSHIP | TDIDOP

Logginglj dz2 G S dTrade@upt@ & Belting Audit to log the
quote is.

This isvhy mock objects were invented: to allow us to more easily
testRNA @S RS&aA3Iya YIRS dzZLJ ankhis2062S0
aSyaSz vy201a FINB y2i NBILFffte | ¢

lj
helping us to testriven designs that are more loosely cougle

ABUSING MOCK OBJERRAMEWORKS

Originally intended as a design tool for TDD, mock object
frameworks can help us to testrive objects that are loosely
O2dzLJ SR FyR (KFG ¢Stttz 52yQi ! aj
ending up with code that is more ditilt to change.

Many developers rely on mocks as a crutch for writing tests for
poorly designed code. When your designs look like this:

: InsuranceQuote | | : Motorist | | : License

calculatePremiurfcarValug

getLicens@

getDate OfBirtif)

getGende()

getDatelssue)

getPointg)

Then things can get a bit sticky in our test code. The problem is that
mocking frameworks expose internal details abavhich methods
should get called. Just as surely as lots of getters break object
encapsulation, so too does lots of mocking code.

If we wanted to refactor this design to make it more loosely
coupled:

CODEMANSHIP | TDDLP

: InsuranceQuote | | : Motorist | | : License

calculatePremiurgcarValug

calculatePremiurgtarValug

calculatePremiurftarValug

It would break a whole bunch of tests that expligitely on there
being getters instead.

¢tKS ¢gK2fS LJzZN1I2asS 2F Y201a Aa
design in the first place. Abuse and oveliance on mock objects
can effectivelybake in a bad design

DUMMIES

Blink and you might have missed tfect that we already used
dummy objects in some of the tests in this chapter.

I RdzYYeé Aa Iy 202S00G doKifitisuged,y Qi
$S R2y Qi @buNiat hlasit@®bazincludled so that we can
compile and run the test.

@Test
public void driverUnder25PaysFivePercentPremium() {
Motorist motorist = new Motorist("01/01/1900"

Gender. MALE
null
new AgeCalculatorStub(24));
assertEquals (0.05,
motorist.calculateAgePremium(), 0);
}

In this test, notice how we pass in a null value lfoenseto the
Motorist constructor. We have to pass in something, or the test
O2RS 62y Qi O2YLWAT So . Drverdiicknsea (S
so null is the simplest thingencan use.

LG YA3IKEG 6S GKFIG GKS O2RS 6SQNB
¢odzi 1K2aS YSiK2RAa R2y Qi NBGdzNY

CODEMANSHIP | TDDLL

use a stub)g in which case we can use the Null Object design
pattern.

A Null Object is an empty implementation of emterface that we
Oy Olff YSGK2Ra 2y3> odzi GdK2a$sS Y.

A Null Object implementation foDriverd.icensewvould require a
pure interface, with a dummy implementation that looks like this:

public interface License {

public abstract void addPoints(int points);

public class LicenseDummy implements License {

@Override
public void addPoints(int points) {
}

}

When our codeunder test invokesaddPoints()on our dummy
license, nothing happens. But if theenseparameter value was
I OldzZl f & ydZ X ¢6SQR 3ISG |y dzy Kl yl

Another way of creating Null Objects is using a mock objects
framework.

@Test

public void tradePricelsStockPriceTimesQuantity() {
String stock = "INTEL" ;
StockPricer pricer = new StockPricerStub(10);
TradeQuote trade =

new TradeQuote(pricer, mock(Audit. class));
assertEquals (1000, trade.quote(stock , 100), 0);
}

In this example, we use a moékiditobject as a dummy. The test

Aday Qi o2dzi GKS AYyGSNIOGA2Y 6AGK
of the quote. But we know thaAudit.log() will be invoked, so

passing in a mock objetdkes care of that. Mddto will generate

CODEMANSHIP | TDD1R

an implementation of theAuditA y 4 SNJF I OS G KI G4 Qa
Object.

WHOSE INTERFACETI&ANYWAY?

Imagine, in our example, that our external stock price provider has
created a convenient Java API for using their service.

public interface AcmeStocks {
public double price(String stockSymbol);

}
Why not use implementations of this to create our test doubles?

If we did, this could cause problems later on. First of all, the design
2F GKAAa AYOGSNFIFOS A& 0Se2yR 2dzN
Stocks API upp-date,because it connects to a live web service. So
SOSNE GAYS 1'0YS {2014 OKlIy3asS 2
code that depends on it.

Also, what happens if Acme Stocks go bust? Or if we find a provider
who offer better terms and want to switcHPour TradeQuotelogic
depends directly on their interface, we may have to rewrite all that
code.

LiQa o0Sad d2 LINRPGSOG 2dz2NJ O2RS ¥
this, by declaring our own interfaces, that we control, that will
allow us to swap implementationsithout rewriting big chunks of

our application logic.

¢NHzS (GKIFGX a2YS6KSNBE Ay 2dzNJ O2R
dependency. But aim to isolate that dependency, keeping it as
small as possible, andinone eagily I LILJISR L) | OSR®
test-driving integration code in the next chapter.

CODEMANSHIP | TDD1B

MOCKS VS. STUBS UBMMIES

What distinguishes a mock from a stub from a dummy is not how
these test doubles are implemented, blobw they are useth our
tests.

We can create stubs and dummies using modgeatframeworks.
E.g.

@Test

public void tradePricelsStockPriceTimesQuantity(){
String stock = "INTEL" ;
StockPricer pricer = mock(StockPricer. class);

when(pricer.getPrice(stock)).thenReturn(10.0);
TradeQuote trade =
new TradeQuote(pricer, mock(Audit. class));
assertEquals (1000, trade.quote(stock , 100), 0);
}

We createdpricerusing themock()method, but set it up to return

6Sad RFEGFIF® ¢KAAa (Sad A BywdRricer 6 2 dzi
AGQa lo2dzi GKS ORHe®fdeepticérisa stub,2 ¥ (i K
not a mock.

And, in the same test, we usenock() to create a dummy
implementationofAuditt ! I Ay X A0Qa y20G I Y2
to test that methods on thé\uditobject are invoked.

Finally, we can create mock objects without using mugki
frameworks. At their essence, mock objects are just
implementations of interfaces that remember when their methods
are invoked (and with what parameter values), allowing us to test
the interactions between objects in our designs.

There are many ways thicould be achied in code. A simple way
in Java might be to use anonymous classes to implement interfaces,
with method implementations that record interactions.

(Indeed, according to a pioneer of mock objects, Steve Freeman,
this is how they started.)

CODEMANSHIP | TDDL§

public class LibraryTests {

private boolean awardPriorityPointsIinvoked ;
private boolean registerCopylnvoked ;

@Test
public void tellsTitleToRegisterCopy() {
registerCopyInvoked = false ;
Member member = new Member(}{
public void awardPriorityPoints(int points){}
h

Title title = new Title(){
public void registerCopy(){
registerCopylnvoked = true ;
}
h

new Library().donate(title, member);
assertTrue ("title.registerCopy() was not invoked" ,
registerCopylnvoked);

}
@Test
public void tellsMemberToAwardTenPriorityPoints() {
awardPriorityPointsinvoked = false ;
Member member = new Member(}{
public void awardPriorityPoints(int points){
awardPriorityPointsinvoked = (points == 10);
}
B | o
Title title = new Title(}{ public void registerCopy(){}};

new Library().donate(title, member);
assertTrue (
"member.awardPriorityPoints(10) was not invoked" ,

awardPriorityPointsinvoked);
}
}
{2 | Rdzxryé AayQi | 201 edzal

v
Y201Ay3 FNIYSG2N]J® ! yR @2dz R2)
framework to create mock objects.

Remember:

1. LT A0 QpiovideK SBHB &Btibl = A GQa |
2. LT A impdrtanty Buiihas to be there for the test to

O2YLAE S | dRmpNbzy = AGQa
3. fgSQNB dzaAy3 Al G2 GBoski 2062$

CODEMANSHIP | TDD1p

EXERCISE #11

Testdrive some code that compares prices on TVs from three
different sources:

1. Screen Bargainsan orline TV retailer with a web API

2. Acme TV a retail chain with an olfashioned TCP/IP
Electronic Data Interchange interface

3. Televiziorg a mail order company who provide a monthly
price list in an Excel spreadsheet

By specifying a make and model of telawis your code will find
the best price and recommend that retailer. If more than one
retailer is offering the same best price, your code will list them all.

Searches also trigger a message to be sent to woutargeting

engine detailing the make and mad of TV the user is interested

in.

LI @ Ef 2F GKS ¢55 LINAYOALX Sa |
and use test doubles appropriately to provide the test data that

would normally come from these 3 external sources, and to-test

drive sendlng amesga to the ad targetlng englne For any objects

Ay @2dzNJ 6Said GKI ySSR G2 068 (KS
use a dummy.

CODEMANSHIP | TDDLB

15.

TESTIDRIVING INTEGRATION

CODE

Summary:

1 Minimise code that needs to be integration tested, so you
have to live with as few @W-running tests as possible

1 Aim for < 5% integration code (and <5% integration tests)

9 Isolate and minimise duplication of code that has external
dependencies

1 Use dependency injection to make integration code easily
swappable

1 Group fastrunning and slowunning tests separately, so
we can easily choose which kind to run

9 Forultimate flexibility, package integration code separately

Imagine we needed to tegtrive some code that calculates average
ratings of video titles supplied by an external website chR®tten
Potatoes.

We could stub the service that fetches the reviews for a title, so we
can test the calculation of the average.

CODEMANSHIP | TDDL7

@Test

public void averageVideoRatinglsTotalDividedBy Count () {
String name = "Jaws 3D" ;
Title title = new Title(name);
Review[] reviews = new Review[2];
reviews[0] = new Review(name, 3, "),
reviews[1] = new Review(name, 2, "),

ReviewsService reviewsService =

new ReviewsServiceStub(reviews);
VideoStats videoRating =

new VideoStats(title, reviewsService);
assertEquals (2.5, videoRating.average(), 0);

}

This gives us a fastinning test for the calculation. But at some

03 & dzimgtd Rave toon8t@ddie cad2 that actually
O2yySOGa (G2 w2ddSy tz2a4GlF4G42S5aQ !'tL.
[SGQa 6NRGS | GSai F2N | LINE
ReviewsService

public class JSONReviewsServiceTests {

@Test
public void reviewsTestServiceHasTwoReviewsOfJaws3D() {
ReviewsService service =
new JSONReviewsService(
"http://localhost:8080/rottenpotatoes/json/reviews/"
Review][] reviews = service.fetchReviews("Jaws 3D");
assertEquals (2, reviews . length);

}
}

When we run this test, it will connect to a test reviews seatghe

URL specified and use an HTTP GET to retrieve all reviews for Jaws
3D (of which we know there are two, because we control that test
data.)

In our implementation, a bunch of stuff happens:

CODEMANSHIP | TDD1B

public class JSONReviewsService

private final String wurl ;

implements ReviewsService {

public ~ JSONReviewsService(String REST_url) {

this .url =REST url;
}

@Override

public Review[] fetchReviews(String titleName) {

String json =
try {

url += URLEncode.
CloseableHttpClient httpClient =

HttpClients.

HttpGet getRequest =
getRequest.addHeader(
HttpResponse response;

encode(-8D) | eNadamget 6 U"

createDefault ();

new HttpGet(url);

"accept”

, "application/json");

response = httpClient.execute(getRequest);

CODEMANSHIP | TDDLP

if (response.getStatusLine().getStatusCode() != 200) {
throw new RuntimeException(
"Failed : HTTP error code : "
+ response.getStatusLine().getStatusCode());
}

BufferedReader br =
new BufferedReader(new InputStreamReader(
(response.getEntity().getContent())));

String output;

while ((output = br.readLine()) != null) {
json += output;
}

httpClient.close();

} catch (ClientProtocolEx ception el) {
el.printStackTrace();

} catch (IOException el) {
el.printStackTrace();

}
JSONArray jsonReviews = new JSONArray(json);
Review[] reviews = new Review[jsonReviews.length()];
for (int i=0;i<jsonReviews.length(); i++) {
JSONODbject obj = jsonReviews.getJSONODbject(i);
reviewsl[i] =
new Review(obj.optString("title"),
obj.optint("rating"),
obj.optString("comment"));
}

return reviews;

}
}

If we write a data service like this for every kind of externally
provided data in our application, we could wind up with a lot of
code that has to be integration tested, and a large suite of slow
running tests.

Remember our design principlds:thisISONReviewsServitmng
one specific thing?

In fact, it does two things:

1. Fetch the JSON data from the reviews server
CODEMANSHIP | TDIRP

2. Parse the data and build an array of reviews

[SGQa NBFIOG2NI GKA&A RSaAIy Aydz

@Override

public Review[] fetchReviews(String titleName) {
RESTClient client = new RESTClient(url);
String json = client.get(titteName);

JSONArray jsonReviews = new JSONArray(json);
Review[] reviews = new Review[jsonReviews.length()];

for (int i=0;i<jsonReviews.length(); i++) {
JSONODbiject obj = jsonReviews.getJSONODbject(i);
reviewsl[i] =
new Review(obj.optString("title"),
obj.optin t("rating"),
obj.optString("comment"));
}

return reviews;
}
Nexi > £ SiQa O2YL}RasS AdG FNRBY GKS
to makeRESTCliestvappable.

public class JSONReviewsService implements ReviewsService {
private final Client client ;

public JSONReviewsService(Client client) {

this . client = client;

}

@Override

public Review[] fetchReviews(String titleName) {
String json = client .get();

RESTClietfrom which we extracted th€lientinterface- gets its
own integration test, which has nothing to do with rewig or
ratings.

CODEMANSHIP | TDIDRL

2

public class RESTClientTests {
@Test
public void returnsDataFromSpecifiedRESTurl() {
String url = "http://localhost:8080/resttest/json/test"
RESTClient client = new RESTClient(url);
assertEquals ("[{foo:0}]" , client.get("foo"));
}
}

We can easily separate this slaunning integration test from the
fastrunning tests, enabling us to choose whether to run only unit
tests, or only integration tests. (Or all tests).

4 3 tect

4 M com.codemanship.videos
. [3] ClientStub,java
.] JSOMReviewsServiceTests.java
- [3] ReviewsServiceStub.java
. [4] VideoStatsTests,java

4 H com.codemanship.videos.rest
. [J] RESTClientTests.java

We can reusREST@NtTF 2 NJ 2 i KSNJ aSNIBAOSad { |
asked to pull a release schedule of new video titles from an online
NBGFAEfSNDRE wo{¢ !tLO®

We can even go a step further, and package our integration code

(and associated tests) separately, so it can be reusedther
RSOSt2LIYSyd LINR2SOGad® ob.Y Ay GK;
of release, like a Java JAR file, or a DLL in .NET.)

CODEMANSHIP | TDIDR2R

Videos ServiceClient

<< interface >> << interface >>
ReviewsServicg Client

L|§ 2\

VideoStats

JSONReviewsServide REST

RESTClient

The Videospackage only depends directly on tf&erviceClient
package, which theRESTpackage extends. This would give us
ultimate flexibility. We could even swap in newClient

implementations without stopping the application.

hdzZNJ NBTF Oi2NBR RSaA3dy 2FFSNA

before:

1 We can stulClientwhen testing]SONReviewsSeryiaad
test that the JSON datis parsed correctly by itself

@Test
public void fetchesReviewsForTitle() {
String reviewsJson = o+
"{title : \ "Jaws 3D \ ", rating : 3, comment: M\
"{title : \ "Jaws 3D \ ", rating : 3, comment: "\

ReviewsService service =
new JSONReviewsService(

new ClientStub(reviewsJson));
Review([] reviews = service.fetchReviews("Jaws 3D");

assertEquals (2, reviews. length);

}

1 We can reus®ESTCliefr other kinds of data that needs

4_4_

dza

to be retrieved from a REST service. All it needs is the URL

and parameter values.

1 We can substitute a different client implemetion
dynamically, which can help us if there are multiple data
a2dz2NDOSasx 2 Ndaldnding dgcsy Mdbltiple RESR

servers.
CODEMANSHIP | TDID2B

In practice, code that has direct external dependencies can be
greatly minimised by following the design principles of mising
duplication, giving methods and classes a single responsibility, and
composing objects from the outside. | typically find integration
code need only make up less than 5% of the code in an application,
and therefore less than 5% of the tests.

We can @ the maths; integration code isby its very nature at

the edges of our system, meaning that changes to inner code (Ul
f 2320z O2y(NRfftSNE>X o0dzaAySaa f
AlQa tSaa GKIFy p» 2F (KShaighd I €
it less than 5% of the time. Which means we need to run our
integration tests 20x less often than our unit tests.

LF¥ ¢ S colgBnised &Moft it, slowunning integration tests

R2y Qi KIFI@S (2 06S I o0dz2NRSyo®

¢t KSNBEQa Y2NB NB7TI Odit@iNgrofedhisicdde. & y S
2S5S00S YIRS Al SFraASNI 68 YAYAYAAA
code.

23
o

EXERCISE #12

/| 2YldAydAy3a gAGK GKS aryS O2RS &2
drive some code that compares prices on TVs from three different

& 2 dzND S & étesttversdidhsdof tHps@ 3 data sources (a web
service, a simple TCP/IP daemon, and an Excel spreadsheet). Set

a local file to store audit logs.

Testdrive implementations that will get data from or write data to
these external sources. Try as much asgilde to isolate the
external dependencies and minimise the code that really needs to
be integration tested.

CODEMANSHIP | TDIR2K

16. TDD WITH THE CUSTOME

Summary:

1 Examples help us to pin down the precise meaning of
requirements

I We can extract data from customer examples te us
tests

1 A user story is a placeholder to have a conversation with
the customer where we agree tests that will act as our
requirements specification

1 Writing tests is a skilled job, and the customer will probably
require our assistance to produce effeditests

T ¢KS Odzad2YSNRa (Sada Ydzaid RS
software will need to handle

1 Negotiate feature scope and complexity by negotiating
tests

9 If you realise test cases have been missed, go back to the
customer to agree new tests. You are nlo¢ tcustomer

! FSIGdzZNB AayQl aR2ySé dzyGaAf

1 Work in vertical slices, delivering working software that
LI aaSa GKS Odzad2YSNRa GSada

1 Making customer tests machirexecutable guarantees
absolute precision

9 Tools like FitNesse allowstomers to provide test data we
can use irexecutable specifications

1 Once we have a failing customer test, we can implement a
design that will pass the test

T / t248S OdzaG2YSN) Ay@2ft dSYSyi
workaround or substitute that works anywhere neas
well.

CODEMANSHIP | TDI2B

A common misconception about TDD is that it focuses on unit tests
and the internal design of our software. In fact, the tests that drive
our designs can be written at any level of design. They could be
system tests that drive the software througim external interface,
integration tests that drive the interactions between systems,
services or component®r unit tests that drive the design of our
classes.

An increasingly popular application of using tests as specifications
helps us to communicateith our customers, building a precise
shared understanding of what is required from the software.

SPECIFICATION BY EMRAE

Decades of experience working with customers to understand their
requirements has taught us that the best way to pin down exactly
what the customer wants is to use examples.

Ly NBFf fAFST &a2YS2yS YAIKI
YR aasSSiéad . dzi K2g K204 A&

Q- ax

L
X K

aKz2i

We could ask the customer to specify the precise temperature they
like their cofee served at (e.g., 90), and the exact sugar content
CODEMANSHIP | TDI2B

(p))
[@=N o(

No

G§KS28 RSAANB onnak[0D . dzix OKI y(
precise temperature is, or exactly how many grams of sugar per
litre. As expert baristas, we may think in those terms: our customer
probk 6f &8 R2SayQio

To understand how our customer really likes their coffee, we could
ask them to give usmaexample cughat they believe is just right,
and extract data from that example about the precise temperature
and sugar content.

To flesh out our undstanding of how customers want their coffee,

S O02dzZ R &1 F2N) Y2NB SEI YLX Sad
YR a6SSG¢é¢x o0dzi WIyS dndRajésh likdsi &
Al aYAfle 6AGK 2yS fdzyYL¥ ® 9EI Off
makethecof SS G o KAGSEéK 126 YdzOK Y2NB
YdzOK adzaAF NI A&d GKSNB Ay a2yS f dzy

We can apply the same technique to pinning down software
requirements. A customer may ask that:

G2 KSYy | Y2@AS (GAGES A& | RR&R G2
Fy AYOGSNBad Ay 02NNRgAy3I AL | NB
Which movie title? Who expressed an interest in borrowing it? How

R2 ¢S (y2¢6 UGUKSEBQNB AYyiSNBalSRK

CODEMANSHIP | TDIDRJ[?

By asking the customer to give a specific example, we can remove
the ambiguity from their specification:

G2 KSy ie Yite @he Abyssis added to library, members
joepublic janedoe and fredbloggs are alerted because they
expressed an interest borrowingtitles containingl 6 @ a a Q

In Extreme Programming, we agree the precise details of user
stories using customer & examples as our specifications.

KA& NBIljdzANBa dza (2 62N] GSNE Of
KSY tSI 9SS GKS NR2Y dzy At &2dzQ@S
2 g2N] FTNRY® ! yR R2y Qi oNRGS I+ f
you have a failingustomer test that requires it.

[t N et =

If you are disciplined and rigorous about it, your customer will soon
f SENYy GKFG AF GKSNB AayQid | dSai

USER STORIEPLACEHOLDERS FORVERSATIONS

In Extreme Programming, customers requestvnieatures and
changes to existing features by writing user stories. A user story is
not, in itself, a requirements specification. It contains just enough
information to uniquely identify the requirement, and serves
purely as a placeholder to remind the \ddopers to have a
conversation with the person who wrote the user story to agree the
details.

CODEMANSHIP | TDI2B

;D O\ o&;h'l [NV D

AL =« Uidte (bfara ™Member

[ot e donade a DVD

<o Hrok o v mMmenlos Cawnm

Iso Crows '\k

In a testdriven approach, when developers pick up a user story to
work on, the output of this conversation with the customer should
include asetofteststia LINSOA &aStf e &ALISOATE ¢

Customers are usually not software testers, so we must offer them
guidance on this process and help them to identify the test
a0SyIFrNxz2a ¢SQftf ySSR (2 O2yaArR-e
members to choose a pasevd when they join, we might ask the
customer to consider what should happen if the password they
choose is too weak, or what should happen if the password field is
left blank, and so on.)

Teams that expect customers to go away and write the tests
themseles could be waiting a long time. This is a technical skill that
takes a long time to master. If you have dedicated testers on your
team, this is one area where they can prove very useful, helping the
customer to articulate their needs as tests.

In our exanple, working with the customer, we identify several
tests that the system will need to pass:

CODEMANSHIP | TDID2P

f 52y FdGAYy3a | Y2@AS GAGES GKIFG A
LI GKE O

1 Donating multiple copies of the same movie title
1 Donating a copy of a movie title that the ldvy already has
copies of
f 52y FdAy3a | O2L®R 2F | aoft2010d

highly sought after by members, earning double the
reward points)

TEST COMPLETENESIE&T SCOPE

Writing good tests for a user story can require a considerable time
invesiment from everyone involved, and this can encourage teams
to rush the process. When we miss test cases that our code will
need to handle, we end up with an incomplete specification, and
ultimately ¢ incomplete software.

The software must meaningfully hdie every input that its
AYGSNFIIOS Fftt2pax a2 6SQfft ySSR
unique possibility.

LF I dzaSNJ ad2NR 3ISYySNIiGSa 22 Y
too complicated. We can break complex stories down into-sub

requirements, as well as limiting test cases by simplifying or
constraining the allowable inputs.

C2NJ SEFYLX S5 4SS O2dA R aLX Al a52y
O2Lk 2F | 5+x5¢ [yR a52yI 4SS Ydz GAL
decide that users can only donate onepgaat a time (since it will

probably be a rare occurrence for them to own multiple copies of

the same movie title.)

Whatwe musheverR2 A a Fff2¢ +y AyLdzi GKI
KFyRf S® C2NJ SEI YL ST AF (GKS £ A0 NJ
to donate more than one copy, but the code only registers one

copy.

CODEMANSHIP | TDIDBP

Writing tests with the customer is often a negotiation over the
a2Fdok NBEQa ao02LSsE a2 0S LINBLI N
software sooner by limiting that scope.

¢1 9 ¢9{¢{ TFTHINKEOES5S5DbQC

Tryas we might to identify every test case for a user story before R
$S &0FNI 6NARAGAY3I O2RS> GKS YI EA
inevitably apply.

While testdriving an implementation of our movie title class, we
YAIKG RAA02QSN) (Hele o ba two differed? & & A
movies with the same name. (For example, there are two movies
OFrfft SR a¢KS ¢KAYyIE&dO | 26 R2 6S
We could identify movies by both the name and the year of release
0SPIADPT GAC¢KS CKAYFIOODYIMTMS EDPYR 6
But this is not a change we can make without rethinking our user
interface. As developers, we must be aware that every line of code
S GNRGS Ay az2vy$8S gle& RSTAySa K
If a change to the code will mean a change to the extiynasible

2NJ YSIFadzN»Y6fS FdzyQliaAz2yAy3d 2F GK
GKFG RSOAaA2y o0& 2dz2NESt @Saod LGQ
When you hit new test cases during implementation, take them to

the customer and specify the changes witleth as part of their
tests for that feature.

59CLbL¢Lhb hC a5hbo9ce

InatestRNRA @Sy | LILINBIF OK (G2 RS@Sft 2LJ
provide us with a clear understanding of what they need from the
software.

CODEMANSHIP | TDDB[L

Going back to our coffee example, we can delivemasy cups of
O2FFSS (2 (GKS Odzali2YSNI Ia S A7
delivered a cup that passes their test {@vith 10g/L of sugar).

The customer should not accept a delivery until it passes their tests,
and this is why we often refer to theasacceptance tests

This not only helps us to pin down requirements, clearing up
possibly very costly misunderstandings, it can also help us to
measure our progress much more objectively.

{2F06I NB RSOSt2LISNE I NB y2i§2NAK2dz
when completion of really still a long way off. But when we assess
completeness based on passmg customer tests (e g., it passes 90%

2F GKS Odzaidi2YSNRa GSaidaovzr 6S TA)
picture of where we are.

D9¢¢LbD ¢h MEBTH®ARQ SLIAES

Some teams make the mistake of working on application layers,
instead of cutting vertical slices through those layers.b§dhe
release datehey may end up writingsay two thirds of the code,

but not get as far as implementing the user interface, ating in

the database, so none of the features can be used.

Feature Progress % Ul Services Domain DB

Donate a DVD 70% 0% 80% 100% 100%
Borrow a DVD 75% 0% 100% 100% 100%
Join the library 65% 0% 60% 100% 100%
Refer a friend 75% 0% 100% 100% 100%
Review a movie 75% 0% 100% 100% 100%
Search for titles 50% 0% 0% 100% 100%
Report DVD lost or damaged 50% 0% 0% 100% 100%
Reverse a DVD 50% 0% 0% 100% 100%
Spend reward points 75% 0% 100% 100% 100%
Transfer reward points 75% 0% 100% 100% 100%

Total progress 66%

Other teams make the mistake of going through a specific
RS@OSt2LIYSyd | OGA@AGE F2NI FEE 2F

CODEMANSHIP | TDIDBR

(KSy O2RS Al Itttz G(KSyifthdyofyt ¢
manage to get two thirdsf the work done before the release date,

IKSeQff KI @S I gK2fS odzy OK 2¥F dz
Feature Progress % Analysis Design Coding Testing
Donate a DVD 75% 100% 100% 100% 0%
Borrow a DVD 75% 100% 100% 100% 0%
Join the library 68% 100% 100% 70% 0%
Refer a friend 70% 100% 100% 80% 0%
Review a movie 50% 100% 100% 0% 0%
Search for titles 50% 100% 100% 0% 0%
Report DVD lost or damaged 63% 100% 100% 50% 0%
Reverse a DVD 63% 100% 100% 50% 0%
Spend reward points 75% 100% 100% 100% 0%
Transfer reward points 75% 100% 100% 100% 0%
Total progress 66%

Driving development with customer tests encourages to organise
ourselves around delivery of working featuréiswe only manage

to dotwo-thirds of the work, we should finish up witlvo-thirds of

the features tested anavorking.

Feature Progress % Total Tests Passed

Donate a DVD 60% 5 3
Borrow a DVD 100% 4 4
Join the library 100% 2 2
Refer a friend 100% 2 2
Review a movie 100% 4 4
Search for titles 0% 4 0
Report DVD lost or damaged 0% 2 0
Reserve a DVD 0% 2 0
Spend reward points 100% 2 2
Transfer reward points 100% 1 1

Total progress 66%

Cut vertical slices through both your architecturell, sevices,
domain, database and your development process analysis,
design,coding, testing, release to ensure that when you say
@ 2dBBNBGR2Y Sé X B6RdondBnk the cistomed&in
benefit from their investment.

CODEMANSHIP | TDID8B

S €2dzNJ GSIFY | NRdzy R GKS |

NB
f JGUKAZ 62Ny Ay3 TSI GdNBKE

Y
]

(,/))>"r
Z o

I
A

pulg=y
wmZ

EXECUTABLE SHHCATIONS

2 KSy AG O2YSa G2 éLJSC))\?)LC)I-GAZVéZ
GLINSOAAS Sy2dzaAK G2 06S SESOdziSR o
To completely eliminate ambiguity from customer specifications,

many development teams write automated tests that check the
software works as desired for each example.

There are many tools available for providing customer example
data to automated tests, but the basic design pattern is always the
same:paramaterised test with customer data

We write a parameterised testmuchasw@ @S R2y S (i KNZd
this book¢ and then data provided by the customer, captured in a

file format they themselves can edit (e.g., a table in a Wiki page, or

a worksheet in a spreadsheet), is sucked in to provide the
parameter values.

A popular tool is FitBsse(www.fitnesse.org)written by Robert C.
Martin. It enables customers to write their examples on Wiki pages,
providing the example data in tables which can then be extracted
and used by automated tests.

CODEMANSHIP | TDID§

In this example, the customer has written angeal description of
theirtestintheD A @Sy X 2 K Soyméttprenbed by a variant
of TDD calle@ehaviousDriven Development

TheGivenclause describes the setup for the test. Mbenclause
describes the action being tested. And thbenclause destbes
the desired outcomes (essentially, the test assertions.)

Underneath that, our customer has provided test data in a table for
a specific example, which we will use in our automated FitNesse
test.

To automate a FitNesse test like this one, we just needrite a
fixture ¢ a plain old Java object that has the name we assigned to
the table,DonateFixture

The inputs will be provided through setters on our object with
names that match the columrigle anddonor. The outputs will be

CODEMANSHIP | TDIDBp

