

CODEMANSHIP | TDD |2

This edition first published in 2016

Codemanship Limited

www.codemanship.com

All rights reserved

© Jason Gorman, 2016

The right of Jason Gorman to be identified as the author of this work has
been asserted in accordance with Section 77 of the Copyright, Designs
and Patents Act 1988. No part of this publication may be copied,
reproduced, stored in a retrieval system, or transmitted, in any form or
by any means without the prior permission of the publisher, nor be
otherwise circulated in any form of binding or cover other than that in
which it is published and without a similar condition being imposed on
the subsequent purchaser.

Printed in Great Britain

CODEMANSHIP | TDD |3

ABOUT THE AUTHOR

Jason Gorman is a software
developer, trainer and coach based in
London. A TDD practitioner since
ōŜŦƻǊŜ ƛǘ ƘŀŘ ŀ ƴŀƳŜΣ ƘŜΩǎ ƘŜƭǇŜŘ
thousands of developers to learn this
essential discipline through his
company CodemanshipΦ IŜΩǎ ǘƘŜ
founder of the original international
Software Craftsmanship 20xxx
conference, an activist for software

developer apprenticeships, a patron of the Bletchley Park Trust, a
one-time-only West End producer, a failed physicist, and a keen
amateur musician. His twelve fans know him as Apes With Hobbies.

You can follow him on Twitter (@jasongorman), or email
jason.gorman@codemanship.com

ABOUT CODEMANSHIP

Founded in 2009, Codemanship
provides training, coaching and
consulting in the practical software
disciplines that enable organisations
to sustain the pace of digital
innovation. Based in London,
Codemanship has trained and guided

teams in TDD, refactoring, software design, Continuous Integration
and Continuous Delivery, and Agile Software Development for a
wide range of clients including the BBC, UBS, Waters plc, Ordnance
Survey, salesforce.com, Electronic Arts, John Lewis, Redgate and
Sky.

You can find out more about Codemanship training and coaching at
www.codemanship.com

CODEMANSHIP | TDD |4

REVIEWERS

Will Price

Mark Withall

Phil Proom

Jon Barber

Erik De Bonte

Antony Gorman

Ilya Agoshkov

François Renaud-Philippon

CODEMANSHIP | TDD |5

CONTENTS

1. Before We Begin .. 9

2. Why Do TDD? ..11

Building the Right Thing ...11

Keeping the Design Simple ..12

tǊƻŘǳŎƛƴƎ /ƻŘŜ ¢ƘŀǘΩǎ 9ŀǎȅ ¢ƻ /ƘŀƴƎŜ12

Making Sure the Software Always Works13

Sustaining the Pace of Development13

Reliability vs. Productivity ..13

3. What is TDD? ...17

4. How To TDD ..18

5. The Golden Rule ..29

Test-Driven Design vs. Design-Driven Testing31

6. Start With the Question ...33

7. Test Your Tests ..37

Fluent Assertions ...40

8. One Reason To Fail ..43

9. Tests Should Be Self-Explanatory ...46

10. {ǇŜŀƪƛƴƎ ǘƘŜ /ǳǎǘƻƳŜǊΩǎ [ŀƴƎǳŀƎŜ51

11. Triangulating ...55

Triangulation Patterns ...61

Obvious Implementations & TDD άDŜŀǊǎέ62

12. Refactoring ...64

13. Design Principles ...81

Simple Design ..81

CODEMANSHIP | TDD |6

¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪ ... 83

Single Responsibility .. 87

Swappability & Dependency Injection 91

Client-Specific Interfaces ... 93

Polymorphism & Contract Testing 97

14. Test Doubles ... 102

Stubs ... 103

Mock Objects .. 107

Dummies ... 111

Whose Interface Is It Anyway?... 113

Mocks vs. Stubs vs. Dummies .. 114

15. Test-Driving Integration Code .. 117

16. TDD With The Customer .. 125

Specification By Example ... 126

User Stories ς Placeholders For Conversations 128

Test Completeness & Test Scope 130

¢ƘŜ ¢Ŝǎǘǎ ²Ŝ 5ƛŘƴΩǘ ¢Ƙƛƴƪ hŦ .. 131

5ŜŦƛƴƛǘƛƻƴ ƻŦ ά5ƻƴŜέ .. 131

DŜǘǘƛƴƎ ¢ƻ ά5ƻƴŜέ Lƴ ±ŜǊǘƛŎŀƭ {ƭƛŎŜǎ 132

Executable Specifications .. 134

The Customer Cannot Be Replaced 137

17. Driving Design From Customer Tests 140

Start With a Failing Customer Test 141

Identify The Work.. 142

Identify The Knowledge Needed To Do The Work 142

Name The Worker ... 142

CODEMANSHIP | TDD |7

Test-driving Adding A Title To The Library143

Test-driving Adding A Default Loan Copy To The Title147

Test-driving Reward Points ..149

Test-driving Email Alerts ..152

¢ƘŜ ά[ƻƴŘƻƴ {ŎƘƻƻƭέ ƻŦ ¢55 ...160

Making Customer Tests Run Faster162

!ǊŜ ²Ŝ ά5ƻƴŜέ ȅŜǘΚ ..163

18. The Testing Pyramid ..165

19. TDD & Continuous Integration170

Before We Commit: Update/Merge & Test Locally.............171

After We Commit: Wait For The TestS To Pass On A Build Server
..172

Making Builds Fast ...174

TDD & Continuous Delivery ...176

Feature Branching & Feature Toggles177

20. TDD & Legacy Code ...179

²Ƙŀǘ aŀƪŜǎ /ƻŘŜ ά[ŜƎŀŎȅέΚ ...180

Start By Identifying The Change Point(s)181

Next, Identify Inflection Points ..182

Introduce Tests. Any Kind Of Tests.183

Break The External Dependencies184

¢ƘŜ ά.ƻȅ {Ŏƻǳǘέ wǳƭŜ ...190

21. Beyond Test-Driven Development192

Data-driven & Property-Based Tests192

Critical Code ..195

Mutation Testing ...196

Test-5ǊƛǾƛƴƎ ¢ƘŜ ά¦ƴǘŜǎǘŀōƭŜέ ...199

CODEMANSHIP | TDD |8

Non-Functional TDD .. 202

Clean Code & Continuous Inspection 205

22. Mastering TDD .. 213

Building Habits .. 214

Make TDD Your Default Behaviour 215

Under The Radar ... 216

Under-promise, Over-deliver ... 216

LǘΩǎ 9ŀǎƛŜǊ ¢ƻ !ǇƻƭƻƎƛǎŜ ¢Ƙŀƴ DŜǘ tŜǊƳƛǎǎƛƻƴ 217

Practice, Practice, Practice! ... 218

CODEMANSHIP | TDD |9

1. BEFORE WE BEGIN

Summary:

1. To learn TDD, you must do TDD
2. You can tackle the exercises in any OO language
3. You will need:

a. A unit testing tool, based on the xUnit pattern, that
supports parameterized tests

b. Automated refactoring menu in your code editor
c. Mock objects framework
d. Pencil & paper

TDD is a practical discipline, like riding a bicycle or playing the
piano. To learn it, you must do it.

The focus of this book will be on doing TDD, and for that reason you
will only get the best from it if you try the exercises.

LΩǾŜ ǘǊƛŜŘ ŀǎ ƳǳŎƘ ŀǎ ǇƻǎǎƛōƭŜ ǘƻ ƪŜŜǇ ǘƘŜ ǘŜŎƘƴƻƭƻƎȅ ŎƘƻƛŎŜǎ ƻǇŜƴΤ
you can tackle the exercises in any object oriented programming
language you like.

But, whether you do them in Java (like I am), or C#, or Ruby, or
Python, or C++, you will need a number of things to get started:

¶ A unit testing tool for that language

¶ Ideally, a menu of automated refactorings in your code
editor that will do the donkey work of refactoring for you

¶ A framework for creating άƳƻŎƪ ƻōƧŜŎǘǎέ that can be used
in some of your tests

¶ Pencil and paper

All of these things are freely available for most programming
languages.

CODEMANSHIP | TDD |10

The xUnit unit testing framework design pattern (invented by Kent
Beck and others) has been implemented in pretty much every OO
language ς JUnit for Java, NUnit for .NET, RUnit for Ruby, etc.

tƛŎƪ ǘƘŜ ƻƴŜ ȅƻǳΩǊŜ Ƴƻǎǘ ŎƻƳŦƻǊǘŀōƭŜ ǿƛǘƘΦ ²ƛǘƘ ƻƴŜ ǇǊƻǾƛǎƻΥ ƳŀƪŜ
sure you pick one that enables you to write parameterized tests. As
ȅƻǳΩƭƭ ǎŜŜΣ ǘƘŜȅ ŀǊŜ ǳǎŜŘ ŜȄǘŜƴǎƛǾŜƭȅ ōȅ ŜȄǇŜǊƛŜƴŎŜŘ ¢55-ers.

Automated refactorings vary from editor to editor and language to
language. You will find that dynamically typed languages suffer a
disadvantage, as there is usually type information missing about
methods and method calls that a tool would need for some
refactorings. Java, Smalltalk and C# have excellent automated
ǊŜŦŀŎǘƻǊƛƴƎ ǎǳǇǇƻǊǘΦ WŀǾŀ{ŎǊƛǇǘ ŀǊƎǳŀōƭȅ Ƙŀǎ ǘƘŜ ǿƻǊǎǘΦ LŦ ȅƻǳΩǊŜ
working in a scripting language like JS, expect to have to do some
refactoring by hand.

Mock object frameworks, again, vary in quality. But, in this book,
we will use them in quite specific ways that pretty much all of them
can handle.

Finally, have a pencil and paper handy. Always. Throughout the
ōƻƻƪΣ ǿŜΩƭƭ ǎŜŜ ǎƛǘǳŀǘƛƻƴǎ ǿƘŜǊŜ ǿŜ ƳƛƎƘǘ ǿŀƴǘ ǘƻ ƴƻǘŜ ǘƘƛƴƎǎ
down, or make a list of tests, or sketch a simple design. Not all our
thinking gets done in code.

CODEMANSHIP | TDD |11

2. WHY DO TDD?

Summary:

¶ TDD helps us to build the right software

¶ TDD helps to avoid buildƛƴƎ ŦŜŀǘǳǊŜǎ ǿŜ ŘƻƴΩǘ ƴŜŜŘΣ ŀƴŘ
making the design too complicated

¶ Refactoring is a key part of TDD. It helps us to keep code
easy to change

¶ The short cycles of TDD, together with fast-running
automated tests, help us to keep our software always
working

¶ TDD helps us to deliver working software sooner, and for
longer

Popularised in the late 1990s by Kent Beck, Test-Driven
Development (άTDDέ) combines practices that the best
programmers have used since the 1950s.

Done well, it helps us to address some key problems in the way we
write software:

¶ Building the right thing

¶ Keeping the design simple

¶ tǊƻŘǳŎƛƴƎ ŎƻŘŜ ǘƘŀǘΩǎ Ŝŀǎȅ ǘƻ ŎƘŀƴƎŜ

¶ Making sure the software always works

¶ Sustaining the pace of development

BUILDING THE RIGHT THING

LƳŀƎƛƴŜ ǿŜΩǊŜ ŘŜǎƛƎƴƛƴƎ ŀ ƴŜǿ ƪƛǘchen. We could make a list of all
the things we think the kitchen needs: a cooker, a sink, a
refrigerator, a toaster, a kettle, cupboards, and so on.

CODEMANSHIP | TDD |12

²Ƙŀǘ ƘŀǇǇŜƴǎ ǿƘŜƴ ǿŜ ŀǇǇǊƻŀŎƘ ŘŜǎƛƎƴ ŀǎ ŀ άǎƘƻǇǇƛƴƎ ƭƛǎǘέ ƻŦ
ŦŜŀǘǳǊŜǎ ƛǎ ǘƘŀǘΣ ŀŦǘŜǊ ƛǘΩǎ ōǳƛƭǘΣ ǿŜ ŘƛǎŎƻǾer we left stuff out that we
needed. For example, we might want to make fresh pasta, but
ŘƛŘƴΩǘ put a pasta machine on our list.

To avoid finding out too late that our shopping list of features is
wrong, we start instead by considering examples of how the kitchen
will be used, and figure out what features it needs to do that.

TDD works this way. We use tests as specifications for what we
want to do using the software.

KEEPING THE DESIGN SIMPLE

Along with the risk of leaving important features out of our design,
ǘƘŜǊŜΩǎ ŀƭǎƻ ǘƘŜ Ǌƛǎƪ ƻŦ ƛƴŎƭǳŘƛƴƎ ŦŜŀǘǳǊŜǎ ǘƘŀǘ ŀǊŜƴΩǘ ƴŜŜŘŜŘ ŀǘ ŀƭƭΦ

In software (as well as kitchens), unneeded features and
unnecessary complexity add costs, both initial and ongoing.

TDD encourages us to write the simplest code possible to pass our
ǘŜǎǘǎΦ LŦ ǘƘŜ ǘŜǎǘ ŘƻŜǎƴΩǘ ǎǇŜŎƛŦƛŎŀƭƭȅ ŀǎƪ ŦƻǊ ƛǘΣ ȅƻǳ ŀƛƴΩǘ ƎƻƴƴŀΩ ƴŜŜŘ
it.

twh5¦/LbD /h59 ¢I!¢ΩS EASY TO CHANGE

Seven decades of computer programming history has taught that
us that our code will almost certainly need to change.

If code is difficult to understand, complicated, full of duplication,
and too interconnected, then it will be expensive to change.

TDD explicitly includes a discipline called refactoring that helps us
to keep our code as easy to change as possible.

After we write the code to pass each test, we stop to refactor the
code to make it simpler and easier to understand, to eliminate
duplication, and to manage the dependencies in the code to
localise the impact of changes.

CODEMANSHIP | TDD |13

MAKING SURE THE SOFTWARE ALWAYS WORKS

{ƻŦǘǿŀǊŜ ǘƘŀǘ ŘƻŜǎƴΩǘ ǿƻǊk has no value. ²ƘƛƭŜ ǿŜΩǊŜ ŜŘƛǘƛƴƎ ǘƘŜ
ŎƻŘŜΣ ǘƘŜ ŎƻŘŜ ƛǎƴΩǘ ǿƻǊƪƛƴƎΦ

TDD breaks development down into small cycles. These micro-
iterations typically last just a few minutes, at the end of which we
have tested, working code that could be shipped if necessary.

We automate the tests so they can be run quickly. This way, after
each small change, we can re-test the software to make sure it still
works.

SUSTAINING THE PACE OF DEVELOPMENT

Keeping the code always working means we can deliver working
software sooner.

And TDD also helps us sustain the pace of development for longer.

Adding new features to new software is easy, and our initial
productivity is high.

But as the code grows, it becomes harder and harder to change it
without breaking it.

The rising cost of change hinders teams trying to respond to the
changing needs of end users. The software becomes a liability
instead of a benefit.

TDD tackles the factors that make code harder to change head-on.

RELIABILITY VS. PRODUCTIVITY

Too many developers have an unrealistic view of the relationship
between the quality of their software and the time and cost of
creating it. The received wisdom is that more reliable software
takes longer to write.

CODEMANSHIP | TDD |14

A mountain of good industry data, however, paints a different
picture. Far from costing more, in the vast majority of cases
improving the reliability of our code would actually end up costing
us less.

The counterintuitive causal mechanism for this strange effect has
been known for several decades. The later we discover them, the
more bugs cost to fix. A bug discovered by users in production can
cost 100x more to fix than if it had been caught as soon as the
programmer made the error.

The difference in cost of fixing bugs at later stages in development
can be so large that, by taking more care to catch them sooner, we
can actually end up going faster.

This is a strategy called defect prevention, and it has been hugely
successful at not only helping teams to improve the reliability of
their code, but also to save time and money delivering working
ǎƻŦǘǿŀǊŜΦ LǘΩǎ ŀ ǿƛƴ-win.

The net result is that better software usually costs less to create.

requirements design coding testing release

cost of bug fix

CODEMANSHIP | TDD |15

¢55 Ŏŀƴ ƘŜƭǇ ƎŜǘ ǳǎ ƛƴǘƻ ŀ άǎǿŜŜǘ ǎǇƻǘέ ƻŦ ǘƘŜ Ƴƻǎǘ ǊŜƭƛŀōƭŜ ŎƻŘŜ
at the lowest cost in four ways:

¶ Agreeing executable tests catches many requirements
ƳƛǎǳƴŘŜǊǎǘŀƴŘƛƴƎǎ ōŜŦƻǊŜ ǿŜΩǾŜ ǿǊƛǘǘŜƴ ŀƴȅ ŎƻŘŜΦ ¢ƘŜǎŜ
ǊŜǉǳƛǊŜƳŜƴǘǎ άōǳƎǎέ Ŏŀƴ Ŏƻǎǘ ƘǳƴŘǊŜŘǎ ƻŦ ǘƛƳŜǎ ƳƻǊŜ ǘƻ
fix in user testing or production

¶ ¢55 ōǊŜŀƪǎ ŎƻŘƛƴƎ Řƻǿƴ ƛƴǘƻ άōŀōȅ ǎǘŜǇǎέΣ ōǊƛƴƎƛƴƎ ƳƻǊŜ
focus to every line of code we write and highlighting more
errors that we might have missed taking bigger bites

¶ TDD encourages us to keep our code simple, and simpler
code is less likely to be wrong

¶ The automated tests TDD creates enable us to check for
new bugs we might have introduced immediately after
making a change

Studies done of teams adopting TDD have convincingly shown that,
on average, test-ŘǊƛǾŜƴ ŎƻŘŜ ƛǎ ƳǳŎƘ ƳƻǊŜ ǊŜƭƛŀōƭŜΣ ōǳǘ ŘƻŜǎƴΩǘ
cost any more ς and in many cases, costs less ς to deliver working
software.

cost

reliability

most reliable
software at
lowest cost

99% of
teams are
here

CODEMANSHIP | TDD |16

TDD is arguably the first defect prevention technique to have
gained widespread adoption.

CODEMANSHIP | TDD |17

3. WHAT IS TDD?

In essence, TDD is an iterative process that involves three steps:

The tests can be at any level of abstraction. They can be system
tests, or component/service tests, or tests for individual classes.

Some developers use a traffic light analogy to remember the steps.

Each new failing test specifies something we want the software to
Řƻ ǘƘŀǘ ƛǘ ŎǳǊǊŜƴǘƭȅ ŘƻŜǎƴΩǘΦ ό¢ƘŀǘΩǎ ǿƘȅ ƛǘΩǎ ŦŀƛƭƛƴƎΦύ

We flesh out our design one failing test at a time, adding just
enough implementation to pass each new test, and keeping the
code as easy to change as possible by refactoring.

Write a
failing test

Write the
simplest

code to pass
the test

Refactor to
make the
next test
easier

άwŜŘ ƭƛƎƘǘέ

άDǊŜŜƴ ƭƛƎƘǘέ

CODEMANSHIP | TDD |18

4. HOW TO TDD

Summary:

¶ Start with the simplest failing test you can think of

¶ Write the simplest code you can think of to pass the test
quickly

¶ If no need to refactor, move on to the next failing test

¶ Refactor your test code, too!

¶ Parameterized tests are a useful way to consolidate similar
test methods

¶ Leave in duplication when it makes tests easier to
understand

¶ Aim for one test method for each distinct rule. Use the test
name to clearly convey the rule

¶ Tests should read like a specification

¶ Localise dependencies on the objects under test

¶ Lƴ ¢55Σ ǿŜΩǊŜ ŘƻƴŜ ǿƘŜƴ ǿŜ ŎŀƴΩǘ ǘƘƛƴƪ ƻŦ ŀƴȅ ƳƻǊŜ ǘŜǎǘǎ
that should fail

¶ TDD is a process of design discovery

¶ Tests make changes safer and easier

The best way to explain how to test-drive a software design is with
a simple example.

²ŜΩre going to create some code that will calculate numbers in the
Fibonacci sequence.

The Fibonacci sequence starts with zero and one, and then all
subsequent numbers are the sum of the previous two.

i.e. 0, 1, 0+1=1, 1+1=2, 2+1=3, 5, 8, 13, 21 etc

CODEMANSHIP | TDD |19

FAILING TEST #1

²ŜΩƭƭ ǎǘŀǊǘ ōȅ ǿǊƛǘƛƴƎ ŀ ŦŀƛƭƛƴƎ ǘŜǎǘΦ όLΩƳ ŘƻƛƴƎ ƛǘ ƛƴ WŀǾŀΣ ǿƛǘƘ ǘƘŜ
Junit testing framework.)

Try to think of the simplest test you could start with ς the one that
would be easiest to pass.

public class FibonacciTests {

 @Test

 public void firstNumberInSequenceIsZero() {

 assertEquals (0, new Fibonacci().getNumber(0));

 }

}

[ŜǘΩǎ ǿǊƛǘŜ ǘƘŜ simplest code that will pass the test:

public class Fibonacci {

 public int getNumber(int index) {

 return 0;

 }

}

bŜȄǘΣ ƭŜǘΩǎ ƭƻƻƪ ŀǘ ǘƘŜ ŎƻŘŜ ŀƴŘ ǎŜŜ if we need to refactor it to make
the next test easier.

!ǘ ǘƘƛǎ ǇƻƛƴǘΣ ƛǘΩǎ ƘŀǊŘ ǘƻ ǎŜŜ Ƙƻǿ ǿŜ ŎƻǳƭŘ ƳŀƪŜ ǘƘƛǎ ŎƻŘŜ easier
to change.

{ƻ ƭŜǘΩǎ ƳƻǾŜ ƻƴ ǘƻ ǘƘŜ ƴŜȄǘ ŦŀƛƭƛƴƎ ǘŜǎǘΦ

CODEMANSHIP | TDD |20

FAILING TEST #2

public class FibonacciTests {

 @Test

 public void firstNumberInSequenceIsZero() {

 assertEquals (0, new Fibonacci().getNumber(0));

 }

 @Test
 public void secondNumberInSequenceIsOne() {

 assertEquals (1, new Fibonacci().getNumber(1));

 }

}

Again, we write the simplest code that will pass both of these tests.

public class Fibonacci {

 public int getNumber(int index) {

 return index ;

 }

}

bƻǿ ǘƘŀǘ ǿŜΩǊŜ ōŀŎƪ ƻƴ ŀ ƎǊŜŜƴ ƭƛƎƘǘΣ ƛǘΩǎ ǘƛƳŜ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ
refactoring again.

¢ƘŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŎƻŘŜ ƭƻƻƪǎ ƻƪŀȅΣ ōǳǘ ǘƘŜǊŜΩǎ ǎƻƳŜ ǾŜǊȅ
obvious duplication in the test code. (Remember: test code needs
to be easy to change, too!)

The most direct way we could eliminate this duplication would be
to turn these two very similar test methods into a single
parameterized test covering both cases.

The built-in mechanism in JUnit for writing parameterized tests is a
ōƛǘ ŎƭǳƴƪȅΣ ǎƻ LΩƳ ƎƻƛƴƎ ǘƻ ǳǎŜ JUnitParams
(github.com/Pragmatists/JUnitParams) to make life easier.

CODEMANSHIP | TDD |21

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

 @Test
 @Parameters ({ "0,0" , "1,1" })
 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {
 assertEquals (expected,

new Fibonacci().getNumber(index));
 }

}

Now, for another failing test.

FAILING TEST #3

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

 @Test
 @Parameters ({ "0,0" , "1,1" })
 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {
 assertEquals (expected,

new Fibonacci().getNumber(index));
 }

 @Test
 public void thirdNumberInSequenceIsOne(){
 assertEquals (1, new Fibonacci().getNumber(2));
 }

}

And then the simplest code to pass all three tests:

CODEMANSHIP | TDD |22

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return 1;

 }

}

Notice the branch in our implementation code. There are two
distinct rules (or patterns) in our solution: one for the first two
numbers, and another for the rest.

If our tests are to serve as specification, it helps enormously if the
rules are obvious from reading the test code.

{ƻΣ ŜǾŜƴ ǘƘƻǳƎƘ ǘƘŜǊŜΩǎ ǎƻƳŜ ƻōǾƛƻǳǎ ŘǳǇƭƛŎŀǘƛƻƴ ƻŦ ǘŜǎǘ ŎƻŘŜΣ ƛƴ
this instance readability is more important.

For this reason, I choose not to add this third test case to the
parameterized test for the first two Fibonacci numbers.

This way, we end up with a test method for each rule, and we can
use the names of those test methods to clearly communicate the
rules.

But thereΩǎ another bit of duplication in the test code we should get
rid of.

Both tests know how to instantiate a Fibonacci object and invoke
the getNumber() method. If the interface of Fibonacci changes,
ǿŜΩƭƭ ƴŜŜŘ ǘƻ ŎƘŀƴƎŜ ƳǳƭǘƛǇƭŜ ǘŜǎǘǎΦ LŜǘΩǎ ǊŜŦŀŎǘƻǊ ǘƘŜ ǘŜǎǘ ŎƻŘŜ ǘƻ
put that knowledge in one place.

CODEMANSHIP | TDD |23

@RunWith(JUnitParamsRunner. class)

public class FibonacciTests {

 @Test

 @Parameters ({ "0,0" , "1,1" })

 public void firstTwoNumbersAreSameAsIndex(int index,

int expected) {

 assertEquals (expected, getFibonacciNumber(index));

 }

 @Test
 public void thirdNumberInSequenceIsOne(){

 assertEquals (1, getFibonacciNumber(2));

 }

 private int getFibonacciNumber(int index) {

 return new Fibonacci().getNumber(index);

 }

}

²Ŝ ŦƛƴŘ ƛǘΩǎ ƎŜƴŜǊŀƭƭȅ ŀ ƎƻƻŘ ƛŘŜŀ ǘƻ ƭƛƳƛǘ ǘƘŜ ƪƴƻǿƭŜŘƎŜ ƻǳǊ ǘŜǎǘ
code has of the interfaces of the objects being tested.

[ŜǘΩǎ move on to another failing test.

FAILING TEST #4

@Test
public void fourthNumberInSequenceIsTwo(){

 assertEquals (2, getFibonacciNumber(3));

}

To pass this test, the simplest solution I could think of is:

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return index - 1;

 }

}

We discovered one rule for the first two numbers, and a second
rule for the next two.

CODEMANSHIP | TDD |24

[ŜǘΩǎ ǊŜŦŀŎǘƻǊ ǘƘŜ ǘŜǎǘ ŎƻŘŜ ǘƻ ǊŜŦƭŜŎǘ ǘƘŀǘΣ ǿƛǘƘ ŀƴƻǘƘŜǊ
parameterized test.

@Test

@Parameters ({ "2,1" , "3,2" })

public void thirdNumberOnIsIndexMinusOne(int index,

int expected){

 assertEquals (expected, getFibonacciNumber(index));

}

.ǳǘ ǿŜΩǊŜ ƴƻǘ ŘƻƴŜ ȅŜǘΦ Iƻǿ Řƻ ǿŜ ƪƴƻǿ ǘƘŀǘΚ ²Ŝ ƪƴƻǿ ōŜŎŀǳǎŜ
we can think of more failing test cases.

FAILING TEST #5

The sixth Fibonacci number has an index of 5 and a value of 5.

@Test
public void sixth NumberIsFive() {
 assertEquals (5, getFibonacciNumber(5));
}

To pass this test, the simplest change we can make to the
implementation is:

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

}

The fifth number obeys the same rule as the third and fourth, so
ǘƘŀǘ ŜȄǘǊŀ ǘŜǎǘ ƛǎ ŘǳǇƭƛŎŀǘƛƻƴ ǘƘŀǘ ŘƻŜǎƴΩǘ ƳŀƪŜ ǘƘŜ ǎǇŜŎƛŦication
ŀƴȅ ŜŀǎƛŜǊ ǘƻ ǳƴŘŜǊǎǘŀƴŘΦ [ŜǘΩǎ ƳŜǊƎŜ ƛǘ ƛƴǘƻ ǘƘŜ ǇŀǊŀƳŜǘŜǊƛȊŜŘ ǘŜǎǘ
for third and fourth, and rename the test method to more
accurately describe the rule.

CODEMANSHIP | TDD |25

@RunWith(JUnitParamsRunner. class)
public class FibonacciTests {

 @Test
 @Parameters ({ "0,0" , "1,1" })
 public void firstTwoNumbersAreSameAsIndex(

int index,
int expected) {

 assertEquals (expected, getFibonacciNumber(index));
 }

 @Test
 @Parameters ({ "2,1" , "3,2" , "5,5" })
 public void thirdNumberOnIsSumOfPreviousTwo(int index,

int expected){
 assertEquals (expected, getFibonacciNumber(index));
 }

 private int getFibonacciNumber(int index) {
 return new Fibonacci().getNumber(index);
 }

}

¢ƻ ŦƛƴƛǎƘ ǳǇΣ ƭŜǘΩǎ ǎŜŜ ƛŦ ǿŜ Ŏŀƴ ǘƘƛƴƪ ƻŦ ŀƴȅ ƳƻǊŜ Ŧŀƛƭing test cases.

FAILING TEST #6

What would happen if we asked for the -1th Fibonacci number?
²ŜΩŘ ŜȄǇŜŎǘ ǘƘŀǘ ǘƻ ŦŀƛƭΣ ōŜŎŀǳǎŜ ǘƘŜǊŜ ƛǎ ƴƻ -1th number.

@Test(expected=IllegalArgumentException. class)

public void indexMustBePositiveInteger() {

 getFibonacciNumber(- 1);

}

To pass this test, we just need to check the parameter value
satisfiŜǎ ǘƘŜ ǊǳƭŜΣ ŀƴŘ ǘƘǊƻǿ ǘƘŜ ǎǇŜŎƛŦƛŜŘ ŜȄŎŜǇǘƛƻƴ ƛŦ ƛǘ ŘƻŜǎƴΩǘΦ

CODEMANSHIP | TDD |26

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 0)

 throw new IllegalArgumentException();

 if (index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

}

Our tests now read like a specification for our Fibonacci calculator.
Just by looking at the names of the test methods, we can see there
are three distinct rules, and the names clearly convey what those
rules are.

We discovered this design by working through a sequence of
examples ς failing tests ς and doing the simplest things we could
think of to pass them.

The end result is a working Fibonacci calculator, with a suite of fast-
running automated tests that will help us if we need to change the
calculator later.

WHY GO TO ALL THE TROUBLE?

Now, imagine we deliver this code to our end users, who complain
ǘƘŀǘ ƛǘΩǎ too slow on higher indexes.

This is because our algorithm is recursive, recalculating the same
numbers many times.

We decide to replace it with an iterative solution that remembers
ŀƴŘ ǊŜǳǎŜǎ ƴǳƳōŜǊǎ ƻƴŎŜ ǘƘŜȅΩǾŜ ōŜŜƴ ŎŀƭŎǳƭŀǘŜŘΦ

CODEMANSHIP | TDD |27

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 0)

 throw new IllegalArgumentException();

 int [] sequence = new int [index+1];

 for (int i = 0; i < sequence. length ; i++) {

 if (i < 2){

 sequence[i] = i;
 } else {

 sequence[i] = sequence[i - 1] + sequence[i - 2];

 }

 }

 return sequence[index];

 }

}

LǘΩǎ ƳǳŎƘ ǎŀŦŜǊ ǘƻ ƳŀƪŜ ǘƘƛǎ ŎƘŀƴƎŜ ōŜcause we have a good set of
automated tests that will alert us straight away if we break the
software.

This is a very important thing to remember about TDD: it may seem
like overkill to take such baby steps and write so many tests for such
a simple problemΦ .ǳǘ ǿŜΩǾŜ ƭŜŀǊƴŜŘ ǘƘŀǘ ōȅ ŦŀǊ ǘƘŜ ƎǊŜŀǘŜǊ Ŏƻǎǘ ƛƴ
software development is the cost of changing code later, and for
the extra up-front investment of TDD, we get a potentially much
larger pay-off.

CODEMANSHIP | TDD |28

EXERCISE #1

a. Test-drive some code that will generate a list of prime
numbers that are less than 1,000

b. Test-drive some code that will convert integers from 1 to
4,000 into Roman Numerals

EXERCISE #2

Test-drive some code that will calculate the total net value of items
in a shopping cart represented as a list of unit price and quantity ς
e.g., {{10.0, 5}, {25.5, 2}}, with the following discounts applied:

1. If total gross value > £100, apply a 5% discount
2. If total gross value > £200, apply a 10% discount

CODEMANSHIP | TDD |29

5. THE GOLDEN RULE

Summary:

¶ 5ƻƴΩǘ ǿǊƛǘŜ ǎƻǳǊŎŜ ŎƻŘŜ ǳƴǘƛƭ ŀ ǘŜǎǘ Ǌequires it

¶ Reference new classes, methods, variables etc in your test
ŦƛǊǎǘΣ ǎƻ ǘƘŜ ŎƻŘŜ ǿƻƴΩǘ ŎƻƳǇƛƭŜΣ ŀƴŘ ǘƘŜƴ ŦƛȄ ƛǘ ōȅ ŘŜŎƭŀǊƛƴƎ
them

¶ Aim to have just one thing broken at a time if possible

As the name implies, Test-Driven Development drives software
design directly from tests.

In practice, what this means is:

We do not write any source code until we have a failing test that
requires it

{ƻΣ ǿƘŜƴ ǿŜΩǊŜ ǘŜǎǘ-ŘǊƛǾƛƴƎ ŀ ŎƭŀǎǎΣ ǿŜ ŘƻƴΩǘ ŘŜŎƭŀǊŜ ǘƘŜ Ŏƭŀǎǎ ŀƴŘ
then start writing tests for it. We start by writing a test, and only
declare the class when the test needs us to.

CODEMANSHIP | TDD |30

As I tackle the shopping basket exercise, I start by writing a failing
test that uses the ShoppingBasket class I intend to create.

aȅ ŜŘƛǘƻǊ ŦƭŀƎǎ ǳǇ ǘƘŀǘ ǘƘŜǊŜΩǎ ƴƻ ǎǳŎƘ ŎƭŀǎǎΣ ŀƴŘ ǇǊƻƳǇts me to
create one.

¦ƴǘƛƭ L Řƻ ǘƘŀǘΣ ǘƘŜ ŎƻŘŜ ǿƻƴΩǘ ŎƻƳǇƛƭŜΦ LǘΩǎ ŀ broken test. The
Golden Rule gives me permission to fix it so I can move on. In TDD,
a broken test is a failing test.

Next, I write code that passes a variable called items into the ς as
yet non-existent - constructor of ShoppingBasket. Again, Eclipse
ǘŜƭƭǎ ƳŜ ǘƘŜǊŜΩǎ ƴƻ ǎǳŎƘ ǾŀǊƛŀōƭŜΣ ŀƴŘ ǇǊƻƳǇǘǎ ƳŜ ǘƻ ŦƛȄ ƛǘ ōȅ
declaring one.

CODEMANSHIP | TDD |31

Moving on, we create the constructor. And keep going in this
fashion, only declaring source code when the test requires it.

Of course, we could write the entire test, and then declare
everything it needs. But in TDD, we favour the shortest feedback
cycles, and so prefer to have one thing broken at a time if possible.

TEST-DRIVEN DESIGN VS. DESIGN-DRIVEN TESTING

A classic mistake programmers new to TDD make is to write failing
tests that assert a design they have in mind, rather than a behaviour
or a rule they want the software to handle.

For example, some people will write a test for a class they want to
declare:

 @Test

 public void forecastIsNotNull() {

 WeatherForecast forecast = new WeatherForecast();

 assertNotNull (forecast);

 }

In a literal interpretation of the Golden Rule, this gives them
permission to declare the class WeatherForecastΦ .ǳǘΣ ŀǎ ǿŜΩƭƭ ǎŜŜ
ƛƴ ǘƘŜƛǊ ƴŜȄǘ ǘŜǎǘΣ ƛǘΩǎ ǊŜŘǳƴŘŀƴǘΦ

@Test
public void forecastForTodayIsAverageOfPreviousTwo(){
 double [] previousDays = new double []{17, 18};
 assertEquals (17.5,
 new WeatherForecast(previousDays).forecast());
}

If WeatherForecast ŘƻŜǎƴΩǘ ŜȄƛǎǘΣ ǘƘƛǎ ǎŜŎƻƴŘ ǘŜǎǘ ǿƻƴΩǘ ŜǾŜƴ
compile. Most importantly, we only need to declare the class so
that we can test the result of forecast().

Be wary of writing tests like this, or that test getters, or other
ŀǎǇŜŎǘǎ ƻŦ ǘƘŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΩǎ ǎǘǊǳŎǘǳǊŜΦ /ƘŀƴŎŜǎ ŀǊŜΣ ȅƻǳΩǊŜ
ŘƻƛƴƎ ǿƘŀǘ ǎƻƳŜ ƻŦ ǳǎ Ŏŀƭƭ άŘŜǎƛƎƴ-ŘǊƛǾŜƴ ǘŜǎǘƛƴƎέΣ ŀƴŘ ƴƻǘ άǘŜǎǘ-
ŘǊƛǾŜƴ ŘŜǎƛƎƴέΦ

CODEMANSHIP | TDD |32

Focus your failing tests on the results of desired behaviour, and
details like this will fall out naturally as we work our way to a
solution.

EXERCISE #3

Repeat exercises #1 and #2, applying the Golden Rule

CODEMANSHIP | TDD |33

6. START WITH THE QUESTION

Summary:

¶ Write the test assertion first and work backwards to the
set-up

¶ Tests have 3 components ς set-up, action & assertions

¶ Starting with the assertion helps us to discover what set-up
we need

Functional tests have three components:

¶ The set-up: arranges objects and test data for the test

¶ The action: invokes the method or function being tested

¶ The assertion(s): asks the questions that will tell us if the
action worked

Intuitively, we tend to write test code in that order. But that can
lead us into difficulties.

How do we know what set-ǳǇ ǿŜ ƴŜŜŘ ŦƻǊ ǘƘŜ ǘŜǎǘΚ LǘΩǎ ƴƻǘ
uncommon, when we write tests in the Arrange->Act->Assert
ƻǊŘŜǊΣ ǘƻ ƎŜǘ ǘƻ ǘƘŜ ŀǎǎŜǊǘƛƻƴ ŀƴŘ ǊŜŀƭƛǎŜ ǿŜΩǾŜ written the wrong
set-up for the question we want to ask.

The test is all about the question, so in TDD we recommend you
start there and work backwards to the set-up you need to ask it.

This may take some getting used to, but ς with practice ς ȅƻǳΩƭƭ ǎǘŀǊt
to feel comfortable doing it this way.

[ŜǘΩǎ ƭƻƻƪ ŀǘ ŀƴ ŜȄŀƳǇƭŜ ǘƻ ƛƭƭǳǎǘǊŀǘŜ Ƙƻǿ ǘƻ ǿƻǊƪ ōŀŎƪǿŀǊŘǎ ŦǊƻƳ
assertions.

Lƴ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ǿŜΩǊŜ ǘŜǎǘ-driving some code to combine 2 1-
dimensional arrays into a single 2D array.

We start by writing the assertion:

CODEMANSHIP | TDD |34

Notice that our assertion references three local variables that
ƘŀǾŜƴΩǘ ōŜŜƴ ŘŜŎƭŀǊŜŘ ȅŜǘΦ .ȅ ǿǊƛǘƛƴƎ ǘƘŜ ŀǎǎŜǊǘƛƻƴ ŦƛǊǎǘΣ ǿŜΩǾŜ
discovered what set-up our test will need.

bƻǿΣ ƭŜǘΩǎ ǿƻǊƪ ōŀŎƪǿŀǊŘǎ ǘƻ ŎǊŜŀǘŜ ǘƘŜ ǎŜǘ-up.

My editor prompts me to create a local variable called combiner,
which I declare as type ArrayCombiner.

LΩƳ ǘƘŜƴ ǇǊƻƳǇǘŜŘ ǘƻ ŎǊŜŀǘŜ ǘƘŀǘ ŎƭŀǎǎΦ

CODEMANSHIP | TDD |35

In a similar fashion, I work my way backwards to declaring local
variables called array1 and array2.

¢ƘŜƴ LΩƳ ǇǊƻƳǇǘŜŘ ǘƻ ŘŜŎƭŀǊŜ ǘƘŜ combine() method, which is the
ŀŎǘƛƻƴ ǿŜΩǊŜ ǘŜǎǘƛƴƎΦ

bŜȄǘΣ LΩƳ ŀǎƪŜŘ ǘƻ ƛƴǎǘŀƴǘƛŀǘŜ ǘƘŜ ǾŀǊƛŀōƭŜǎ ƛƴ ƻǳǊ ǘŜǎǘ ǎŜǘ-up.

Once combiner, array1 and array2 have been initialised in the
correct state for our test, we have the complete set-up.

CODEMANSHIP | TDD |36

public class ArrayCombinerTests {

 @Test
 public void twoEmpty ArraysCombineToAnEmpty2DArray() {
 ArrayCombiner combiner = new ArrayCombiner();
 int [] array1 = new int []{};
 int [] array2 = new int []{};
 assertArrayEquals (new int [][]{},
 combiner.combine(array1, array2));
 }
}

EXERCISE #4

Writing the assertions first and working backwards to the set-up,
test-drive some code to calculate how much water will be needed
to fill the following:

1. A cube
2. A cylinder
3. A pyramid

CODEMANSHIP | TDD |37

7. TEST YOUR TESTS

Summary:

¶ See the test assertion fail, so you know that if the result is
wrong, the test will catch that

¶ Implement just enough to see the assertion fail

¶ ¢Ŝǎǘ ƴŀƳŜǎ ǎƘƻǳƭŘ ŎƭŜŀǊƭȅ ŎƻƴǾŜȅ ǿƘŀǘΩǎ ǎǳǇǇƻǎŜŘ ǘƻ
happen, to help developers fix it when a test fails

¶ How we write assertions can make a difference to how
helpful test failure messages are in identifying the cause

¶ Expected exceptions and mock object expectations are
kinds of assertions

In order for our automated tests to give us good assurance that the
ŎƻŘŜΩǎ ǿƻǊƪƛƴƎΣ ǘƘŜȅ ƴŜŜŘ ǘƻ ōŜ good tests.

LǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ŎƘŜŎƪ ǘƘŀǘΣ ƛŦ ǘƘŜ ǊŜǎǳƭǘ ǿŜ ƎŜǘ ƛǎ ǿǊƻƴƎΣ ǘƘŜ ǘŜǎǘ
will fail.

CƻǊ ǘƘƛǎ ǊŜŀǎƻƴΣ ƛǘΩǎ ƘƛƎƘƭȅ ǊŜŎƻƳƳŜƴŘŜŘ ǘƘŀǘ ς before you write
the code to pass the test ς you see the test fail for the right reason.

public class VideoLibraryTests {

 @Test
 public void donatedTitleIsAddedToTheLibrary() {

 VideoTitle title = new VideoTitle();

 VideoLibrary library = new VideoLibrary();

 library.donate(title);

 assertTrue (library.getTitles().contains(title));

 }

}

When I run this test for donating a video title to a community
library, I get the result:

CODEMANSHIP | TDD |38

This is because, at the moment, VideoLibrary.getTitles() returns null
όōŜŎŀǳǎŜ L ƘŀǾŜƴΩǘ ǿǊƛǘǘŜƴ ǘƘŀǘ ŎƻŘŜ ȅŜǘύΦ

¢ƘŜ ǘŜǎǘ ŀǎǎŜǊǘƛƻƴ ƘŀǎƴΩǘ ōŜŜƴ ŜǾŀƭǳŀǘŜŘΦ Lǘ ŘƛŘƴΩǘ ƎŜǘ ǘƘŀǘ ŦŀǊ
because of the unhandled NullPointerException.

To have confidence in this test, what I need to know is if the
ŀǎǎŜǊǘƛƻƴ ǿƛƭƭ Ŧŀƛƭ ǿƘŜƴ ǘƘŜ ŘƻƴŀǘŜŘ ǘƛǘƭŜ ƛǎƴΩǘ ŀŘŘŜŘ ǘƻ ǘƘŀǘ
collection. So I must add just enough implementation to see that
happen.

CODEMANSHIP | TDD |39

public class VideoLibrary {

 public List<VideoTitle> getTitles() {

 return new ArrayList<VideoTitle>();

 }

 public void donate(VideoTitle title) {

 }

}

Now we can see that the test does indeed fail if the donated title
ƛǎƴΩǘ ƛƴ ŀŘŘŜŘ ǘƻ ǘƘŜ ƭƛōǊŀǊȅΦ

SIDENOTE

!ǎǎŜǊǘƛƻƴǎ ŘƻƴΩǘ Ƨǳǎǘ ŎƻƳŜ ƛƴ ǘƘŜ ŀǎǎŜǊǘΧόύ ǾŀǊƛŜǘȅΦ 9ȄǇŜŎǘŜŘ ŜȄŎŜǇǘƛƻƴǎΣ ŀƴŘ ƳƻŎƪ
object expectatƛƻƴǎ όǿƘƛŎƘ ǿŜΩƭƭ ŎƻǾŜǊ ƭŀǘŜǊύΣ ŀǊŜ ŀƭǎƻ ƪƛƴŘǎ ƻŦ ŀǎǎŜǊǘƛƻƴǎΦ aŀƪŜ
sure you see them fail, too.

CODEMANSHIP | TDD |40

When tests fail, this is our opportunity to send a message to some
developer in the future who might be asked to change our code
(and that could be us!)

The most important piece of information is άWhat should have
happenedΚέ And the best place to convey this is in the name of the
test.

FLUENT ASSERTIONS

!ƭǘƘƻǳƎƘ ǿŜ ƴƻǿ ƘŀǾŜ ŎƻƴŦƛŘŜƴŎŜ ǘƘŀǘ ƛŦ ǘƘŜ ŘƻƴŀǘŜŘ ǘƛǘƭŜ ǿŀǎƴΩǘ
added to the library, this test would catch that, we have to read the
ǘŜǎǘ ƳŜǘƘƻŘ ƴŀƳŜ ǘƻ ƪƴƻǿ ǿƘŀǘ ǿŀǎƴΩǘ ǘǊǳŜΦ Lƴ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ƛǘ
may be obvious, but often we need more information than a test
name can give us.

LǘΩǎ ōŜŎƻƳƛƴƎ ƳƻǊŜ ǇƻǇǳƭŀǊ ŦƻǊ ŘŜǾŜƭƻǇŜǊǎ ǘƻ ǿǊƛǘŜ ǿƘŀǘ ŀǊŜ ŎŀƭƭŜŘ
άŦƭǳŜƴǘ ŀǎǎŜǊǘƛƻƴǎέ ς assertions that can provide extra information
about exactly which part of the assertion failed.

For example, using Hamcrest (www.hamcrest.org), I could rewrite
my assertion:

 @Test

 public void donatedTitleIsAddedToTheLibrary() {

 VideoTitle title = new VideoTitle();

 VideoLibrary library = new VideoLibrary();

 library .donate(title);

 assertThat (library .getTitles(), contains (title));

 }

When this test fails, we get more information in the failure trace.

CODEMANSHIP | TDD |41

CODEMANSHIP | TDD |42

EXERCISE #5

Test-drive code to leave reviews for movies, with:

¶ A rating from 1-5

¶ ¢ƘŜ ƴŀƳŜ ƻŦ ǘƘŜ ǊŜǾƛŜǿŜǊ όŘŜŦŀǳƭǘŜŘ ǘƻ ά!ƴƻƴȅƳƻǳǎέ ƛŦ
not supplied)

¶ The text of the review

It should calculate an average rating for a movie, and also report
the number of reviews for each rating. E.g.,

The Abyss

Rating No. of Reviews

5 13

4 11

3 4

2 5

1 2

Make sure ȅƻǳ ŀǇǇƭȅ ŀƭƭ ǘƘŜ ƛŘŜŀǎ ǿŜΩǾŜ ǎŜŜƴ ǳǇ ǘƻ ǘƘƛǎ ǇƻƛƴǘΣ
including seeing the test assertions fail for the right reasons.

CODEMANSHIP | TDD |43

8. ONE REASON TO FAIL

Summary:

¶ Tests should ask a single question, so that:
o We can bring more focus to each design decision
o Get more feedback with each decision
o More easily debug when tests fail
o Test code is easier to understand

When we test-drive the design of our code, we strive to take baby
steps, making one decision at a time and getting feedback with
each step.

For this and other reasons, it works best when each test asks only
one question.

public class LibraryTests {

 @Test

 public void donatedTitlesAddedToLibrary() {

 Library library = new Library();

 VideoTitle title = new VideoTitle();

 Member donor = new Member();

 library.donate(title, donor);

 assertTrue (library.contains(title));

 assertEquals (1, title.getRentalCopyCount());

 assertEquals (10, donor.getPriorityPoints());

 }

}

In this example, our test asks three questƛƻƴǎΦ ²ŜΩǾŜ ƳŀŘŜ ǘƘǊŜŜ
design decisions in a single step, and will have to do more to get it
the test to pass.

Think, too, about what will happen if this test fails. Which part of
the implementation is broken? Tests that ask too many questions
are harder to debug when things break.

CODEMANSHIP | TDD |44

Tests that ask too many questions bring less focus on each design
decision and less feedback as we go - with the inevitable impact on
code quality that we observe as feedback cycles get longer.

LǘΩǎ ōŜǘǘŜǊ ǘƻ ǘŀŎƪƭŜ ǘƘƛǎ ŜȄŀƳǇƭŜ in three tests, each one asking a
specific question.

public class LibraryTests {

 private Library library ;
 private VideoTitle title ;
 private Member donor ;

 @Before
 public void donateTitle() {
 library = new Library();
 title = new VideoTitle();
 donor = new Member();
 library .donate(title , donor);
 }

 @Test
 public void donatedTitlesAddedToLibrary() {
 assertTrue (library .contains(title));
 }

 @Test
 public void donatedT itlesHaveOneDefaultRentalCopy() {
 assertEquals (1, title .getRentalCopyCount());
 }

 @Test
 public void donorsGetTenPriorityPoints() {
 assertEquals (10, donor .getPriorityPoints());
 }
}

Notice how giving each question its own test enables us to
document each rule with the method names, making the tests
easier to understand.

Some people naively interpret the need for tests to ask only
ǉǳŜǎǘƛƻƴ ŀǎ ƳŜŀƴƛƴƎ ƭƛǘŜǊŀƭƭȅ άŜǾŜǊȅ ǘŜǎǘ ǎƘƻǳƭŘ ƻƴƭȅ ƘŀǾŜ ƻƴŜ
ŀǎǎŜǊǘƛƻƴέΦ LǘΩǎ ƴƻǘ ǘƘŀǘ ǎƛƳǇƭŜΣ ǘƘƻǳƎƘΦ

CODEMANSHIP | TDD |45

 @Test
 public void fibonacciSequenceIsGenerated() {

 Fibonacci fibonacci = new Fibonacci();

 assertEquals ("0,1,1,2,3,5,8,13" ,

fibonacci.generateSequence(8));

 }

How many reasons does this test have to fail? I can see nine: each
individual number in the sequence has to be calculated correctly,
and they have to be separated by commas.

This approach means taking big leaps instead of baby steps, making
multiple design decisions before getting any feedback.

Better to break it down, like:

 @Test
 public void firstNumberInSequenceIsZero() {
 Fibonacci fibonacci = new Fibonacci();
 assertEquals ("0" ,

fibonacci.generateSequence(8).split(",")[0]);
 }

In TDD, the ability to break problems down into the smallest
questions is key.

Finally, be careful about alternative kinds of test assertions. How
many reasons does this test have to fail?

 @Test
 public void donatedTitlesAddedToLibrary() {

 Library library = new Library();

 VideoTitle title = new VideoTitle();

 Member donor = mock(Member. class);

 library.donate(title, donor);

 assertTrue (library.contains(title));

 verify (donor).awardPoints(10);

 }

CODEMANSHIP | TDD |46

9. TESTS SHOULD BE SELF-
EXPLANATORY

Summary:

¶ Choose names of test methods to clearly convey what the
test is

¶ Use names for helper methods, objects, fields, constants
and variables that clearly convey their role in the tests

¶ Use test fixture names that make it easy to find tests

¶ Pick test data that highlights boundaries in the logic

¶ Name literal values ς using constants or variables ς if it
makes their significance clearer

¶ Some duplication in test code is fine when it makes the test
easier to understand

CODEMANSHIP | TDD |47

public class Tests1 {

 private BankAccount a1;

 private BankAccount a2;

 @Before
 public void init() {

 a1 = new BankAccount();

 a2 = new BankAccount();

 a1.credit(100);

 }

 @Test
 public void transferTest1() {

 doAction();

 assertEquals (50, a1.getBalance(), 0);

 }

 @Test
 public void transferTest2() {

 doAction();

 assertEquals (50, a2.getBalance(), 0);

 }

 private void doAction() {

 a1.transfer(a2, 50);

 }

}

!ǘ ŦƛǊǎǘ ƎƭŀƴŎŜΣ ƛǘΩǎ ƴƻǘ ƛƳƳŜŘƛŀǘŜƭȅ ƻōǾƛƻǳǎ ǿƘŀǘ ǘƘŜǎŜ ǘŜǎǘǎ ŀǊŜ
about. Poor choices of names for the test fixture, test methods,
ŦƛŜƭŘǎ ŀƴŘ ƘŜƭǇŜǊ ƳŜǘƘƻŘǎ ƳŀƪŜ ƛǘ ƘŀǊŘŜǊ ǘƻ ǎŜŜ ǘƘŀǘ ǿŜΩǊŜ ǘŜǎǘƛƴƎ
a funds transfer between a payer bank account and a payee.

LŦ ǿŜ ǊŜŦŀŎǘƻǊ ǘƘƛǎ ŎƻŘŜΣ ǿŜ Ŏŀƴ ƳŀƪŜ ǘƘŜ ƛƴǘŜƴǘ ŎƭŜŀǊŜǊΦ [ŜǘΩǎ ǎǘŀǊǘ
with the test method names.

CODEMANSHIP | TDD |48

 @Test

 public void transferDebitsAmountFromPayer() {

 doAction();

 assertEquals (50, a1.getBalance(), 0);

 }

 @Test
 public void transferCreditsAmountToPayee() {

 doAction();

 assertEquals (50, a2.getBalance(), 0);

 }

Test method names should clearly convey what the test is. Not how
the test works, or what method or class is being test: what is the
test?

5ƻƴΩǘ ǿƻǊǊȅ ƛŦ ȅƻǳ ƘŀǾŜ ǘƻ ǿǊƛǘŜ ŀ ƭƻƴƎΣ ǾŜǊōƻǎŜ ǘŜǎǘ ƳŜǘƘƻŘ ƴŀƳŜΦ
²ŜΩǊŜ ƴƻǘ ŘŜǎƛƎƴƛƴƎ ŀƴ !tLΣ ŀƴŘ ǿŜΩƭƭ ǇǊƻōŀōƭȅ ƴŜǾŜǊ ƴŜŜŘ ǘƻ ǿǊƛǘŜ
code that calls our test methods. Think like a newspaper headline
writer.

Now, how about those fields, a1 and a2?

 private BankAccount payer ;

 private BankAccount payee ;

Try to name test objects and test data (fields, variables, constants)
so they convey the role ǘƘŀǘ ƻōƧŜŎǘ Ǉƭŀȅǎ ƛƴ ǘƘŜ ǘŜǎǘΦ !ǎƪ ά²Ƙŀǘ ŘƻŜǎ
ǘƘŜ ŎǳǎǘƻƳŜǊκǳǎŜǊ Ŏŀƭƭ ǘƘƛǎΚέ

Now, how about that unhelpfully general helper method,
doAction()?

 @Test

 public void transferCreditsAmountToPayee() {

 transferFunds(payer , payee , 50);

 assertEquals (50, payee .getBalance(), 0);

 }

 private void transferFunds(BankAccount payer,

BankAccount payee,

int amount) {

 payer.transfer(payee, amount);

 }

Renaming it to transferFunds() makes it much clearer what it does.

CODEMANSHIP | TDD |49

LΩǾŜ ŀƭǎƻ ƛƴǘǊƻŘǳŎŜŘ ǇŀǊŀƳŜǘŜǊǎ ŦƻǊ payer, payee and amount, so
we can better interpret what happens just by looking at the call to
that method in the test.

The init() method sets up our accounts before each test method is
run. We could make it a bit more obvious by renaming it.

@Before
 public void setupAccounts() {

 payer = new BankAccount();

 payee = new BankAccount();

 payer .credit(100);

 }

And finally, Tests1 ƛǎƴΩǘ ŀ ǾŜǊȅ ƛƭƭuminating name for a test fixture.
²ƘŜƴ ǎƻƳŜƻƴŜ ŀǎƪǎ ά²ƘŜǊŜ ŀǊŜ ǘƘŜ ǘŜǎǘǎ ŦƻǊ ōŀƴƪ ŀŎŎƻǳƴǘǎΚέΣ ƛǘ
ǿƻƴΩǘ ōŜ ƻŦ ƳǳŎƘ ƘŜƭǇ ƛƴ ŦƛƴŘƛƴƎ ǘƘŜƳΦ [ŜǘΩǎ ǊŜƴŀƳŜ ƛǘ ǘƻ ƳŀƪŜ ƛǘ
obvious what these are the tests for.

public class BankAccountTests {

As well as naming, our choice of test data can also help to make
tests clearer.

 @Test(expected=InsufficientFundsException. class)

 public void cannotWithdrawMoreThanBalance() {

 BankAccount account = new BankAccount();

 account.credit(100);

 account.debit(100.01);

 }

In this example, we could have chosen any amount to debit great
than 100, but by choosing 100.01, we more clearly communicate
where the boundary is. Debiting 100 will work just fine. Debiting a
penny more will cause an exception to be thrown.

If we wanted to make it even more obvious, we could name the
opening balance.

CODEMANSHIP | TDD |50

 private static final int BALANCE = 100;

 @Test(expected=InsufficientFundsException. class)

 public void cannotWithdrawMoreThanBalance() {

 BankAccount account = new BankAccount();

 account.credit(BALANCE);

 account.debit(BALANCE + 0.01);

 }

Naming literal values like this can sometimes help to clarify its
significance in the test.

[ŀǎǘƭȅΣ ŘƻƴΩǘ ŦƻǊƎŜǘ ǘƘŀǘ ς although we should seek to remove
duplication from our test code - if it makes it easier to understand,
leave it in. Readability trumps reuse.

EXERCISE #6

Revisit the code you write for exercises 1-5, and see if you can make
the tests easier to understand by refactoring them.

If you can find someone to help, ask them to read your tests and
ŎƻƳƳŜƴǘ ƻƴ ŀƴȅǘƘƛƴƎ ǘƘŀǘ ƛǎƴΩǘ ǘƻǘŀƭƭȅ ŎƭŜŀǊΦ

A great way to practice choosing test method names when youΩǊŜ
pair programming is for one person to declare the test, and then let
the other person write the test code based only on the name.

CODEMANSHIP | TDD |51

10. SPEAKING THE CUSTOMEwΩ{
LANGUAGE

Summary:

¶ The key to communicating on a software project is to
establish a shared language

¶ ¦ǎŜ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ƭŀƴƎǳŀƎŜ ǿƘŜƴ ŎƘƻƻǎƛƴƎ ƴŀƳŜǎ ƛƴ ȅƻǳǊ
code

¶ Requirements documents and acceptance tests are a good
source of inspiration

¶ A tag cloud generator is a cheap way of building a visual
glossary of customer terms

The names we choose for classes, methods, variables and other
items can have a profound effect on the way we understand code.

public class PlaceRepositoryTests {

 @Test
 public void allocateFlagsPlaceForUser() {
 PlaceRepository placeRepository =

new PlaceRepository();
 User user = new User();
 Place place =

placeRepository.allocate("A" , 1, user);
 assertEquals (user, place.flaggedFor());
 }

}

If I asked you what business domain this code comes from, could
you tell by looking at the code?

How about if we change some of the names?

CODEMANSHIP | TDD |52

public class FlightSeatingTests {

 @Test
 public void seatIsReservedForPassenger() {
 FlightSeating seating = new FlightSeating();
 Passenger passenger = new Passenger();
 SeatReservation reservation

= seating.reserve("A" , 1, passenger);
 assertEquals (passenger,

reservation.getPassenger());
 }

}

The key to communication is ensuring ŜǾŜǊȅ ǎǘŀƪŜƘƻƭŘŜǊΩǎ ƛƴǘŜǊƴŀƭ
mental model is roughly the same. That means we all need to be
speaking the same language.

If software design is all about solving the custƻƳŜǊΩǎ ǇǊƻōƭŜƳ, it
stands to reason that the language we should all be speaking is the
ŎǳǎǘƻƳŜǊΩǎ ƭŀƴƎǳŀƎŜ.

IŜǊŜΩǎ ǘƘŜƛǊ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ Ƙƻǿ ǊŜǎŜǊǾƛƴƎ ǎŜŀǘǎ ǎƘƻǳƭŘ ǿƻǊƪΥ

The passenger selects the flight they want to reserve a seat

on. They choose the seat by row and seat number (e.g., row

A, seat 1) and reserve it. We create a reservation for that

passenger in that seat.

²ƘŜƴ ȅƻǳΩǊŜ ǎŜŀǊŎƘƛƴƎ ŦƻǊ ŀ ƴŀƳŜ ŦƻǊ ŀ ƴŜǿ ŎƭŀǎǎΣ ŀ ƴŜǿ ƳŜǘƘƻŘΣ
or a new variable, look to ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ŘŜǎŎǊƛǇǘƛƻƴ for
inspiration. What do they call it?

Some teams take establishing a common language so seriously that
they create and maintain glossaries of terms. A cheaper way of
achieving something similar might be to run requirements
documents ς including acceptance tests - through a tag cloud
generator.

IŜǊŜΩǎ ƻƴŜ L ƳŀŘŜ ŦǊƻƳ ǎƻƳŜ ǳǎŜǊ ǎǘƻǊƛŜǎ ŦƻǊ ŀƴ ŀƛǊƭƛƴŜΩǎ ǎŜŀǘ
reservation system.

CODEMANSHIP | TDD |53

CODEMANSHIP | TDD |54

EXERCISE #7

Test-drive some code to automatically play a game based on the
following problem. Run the description below through a tag cloud
generator, and use it for inspiration when choosing names in your
code.

Rock - Paper - Scissors is a game for two players.

Each player simultaneously reveals whether

they have randomly selected Rock, Paper, or

Scissors. The winner of each round is

determined as follows :

Rock blunts Scissors ï Rock wins

Scissors cuts Paper ï Scissors wins

Paper wraps Stone ï Paper wins

If both players select the same, then that

round is a draw.

The game consists of three rounds, but if

thereôs no clear winner after three, they

continue p laying until one of them wins.

CODEMANSHIP | TDD |55

11. TRIANGULATING

Summary:

¶ Triangulation allows us to discover the simplest design one
test case at a time

¶ Like triangulating a position on a map, it works by choosing
2 or more data points and finding the simplest solution that
satisfies them

¶ Taking baby steps brings more focus on each design
decision and leads to better test assurance

¶ Starting with the simplest failing test we can think of, we
gradually generalise the design just enough with each new
test

¶ It requires at least 2 tests to generalise to a pattern or rule

¶ Use test names to document the patterns/rules as they
emerge

¶ As we triangulate our design, we may notice patterns to the
way code generalises that can help guide us

¶ Sometimes, the implementation to pass a test is obvious
ŀƴŘ ǘǊƛǾƛŀƭΣ ŀƴŘ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǘǊƛŀƴƎǳƭŀǘŜ

Creating designs that are as simple as possible, and that work
reliably, requires us to apply more focus to every design decision.

In TDD, instead of leaping for a general solution, we triangulate.

Triangulation is the term we use for the process of pinpointing a
solution using multiple examples. It comes from trigonometry,
where we use triangles to determine the distance and location of a
point (e.g., on a map).

CODEMANSHIP | TDD |56

We take multiple bearings to an object we wish to know the
location of, and that object is where the lines meet ς the location
that exists on all those bearings.

Triangulating in TDD is similar. We pick a failing test case, and come
up with the simplest solution just to pass that test. And then we
pick another failing test, and generalise to the simplest solution
that passes both tests. !ƴŘ ǿŜ ƪŜŜǇ ƎƻƛƴƎ ǳƴǘƛƭ ǿŜ ŎŀƴΩǘ ǘƘƛƴƪ ƻŦ
any more failing tests, looking for the simplest solution that passes
all of our tests.

²ŜΩǾŜ ŀƭǊŜŀŘȅ ǎŜŜƴ ŀƴ ŜȄŀƳǇƭŜ of triangulation, when we test-
drove code to calculate Fibonacci numbers in the chapter How to
TDD?

We could have started by writing a single test.

public class FibonacciTests {

 @Test

 public void fibonacciIsSumOfPreviousTwoNumbers() {

 assertEquals (21, new Fibonacci().getNumber(8));

 }

}

And then implemented a general algorithm to pass it.

a b

D

L

D = L * ((sin(a) * sin(b)) / sin(a+b))

CODEMANSHIP | TDD |57

public class Fibonacci {

 public int getNumber(int index) {

 if (index < 0) throw new IllegalArgumentException();

 if (index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

}

But this is something of a leap. Already, we have things in our
solution that no test requires (namely, the guard condition about
negative indexes).

How did we know this is the right solution? How did we know this
is the simplest solution? And how confident are we that if someone
breaks this code later, our single test will catch it? How easy would
it be to debug it?

Instead, what we did was take baby steps, starting with the
simplest failing test we could think of (the one that would be easiest
to pass).

public class FibonacciTests {

 @Test
 public void firstNumberIsZero() {

 assertEquals (0, new Fibonacci().getNumber(0));

 }

}

And then did the simplest thing possible to pass just that test.

public class Fibonacci {

 public int getNumber(int index) {

 return 0;

 }

}

Then we picked the next simplest failing test we could think of.

CODEMANSHIP | TDD |58

 @Test
 public void secondNumberIsOne() {

 assertEquals (1, new Fibonacci().getNumber(1));

 }

And then we generalised our solution just enough to pass both of
these tests.

 public int getNumber(int index) {

 return index;

 }

²Ƙŀǘ ǿŜΩǊŜ ƭƻƻƪƛƴƎ ŦƻǊ ƛǎ patterns (or rules). LǘΩǎ ƴƻǘ ǇƻǎǎƛōƭŜ ǘƻ
spot a pattern or generalise to a rule from just one example. With
two or more examples, we can begin to generalise.

The simplest pattern that fits the first two tests is that the Fibonacci
number is the same as its index.

Notice how we documented the pattern using a parameterized test
that consolidated those two examples.

@Test
@Parameters ({ "0,0" , "1,1" })
public void firstTwoNumbersAreSameAsIndex(int expected,

int index) {
 assertEquals (expected,

new Fibonacci().getNumber(index));
}

The third Fibonacci number follows a different pattern to the first
two, implying a branch in the logic.

 @Test
 public void thirdNumberIsOne() {

 assertEquals (1, new Fibonacci().getNumber(2));

 }

Many developers would, at this point, leap straight for:

CODEMANSHIP | TDD |59

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

.ǳǘ ǘƘƛǎ ǿƻǳƭŘ ōŜ ǇǊŜƳŀǘǳǊŜΦ LǘΩǎ ƛƳǇƻǎǎƛōƭŜ ǘƻ ƛƴŦŜǊ ŀ much simpler
ƎŜƴŜǊŀƭ ǎƻƭǳǘƛƻƴ ŦǊƻƳ Ƨǳǎǘ ŦǊƻƳ άǘƘƛǊŘ ƴǳƳōŜǊ ƛǎ мέΦ

Instead, lŜǘΩǎ ǘǊƛŀƴƎǳƭŀǘŜ ǘƘƛǎ ƴŜǿ ǇŀǘǘŜǊƴΣ ǎǘŀǊǘƛƴƎ ǿƛǘƘ ǘƘŜ
simplest possible solution to pass the third test.

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return 1;

 }

Notice ǘƘŀǘΣ ŦƻǊ ƛƴŘŜȄŜǎ ƻŦ н ƻǊ ƘƛƎƘŜǊΣ ǿŜΩǊŜ ǊŜǘǳǊƴƛƴƎ ŀ ƭƛǘŜǊŀƭ
ǾŀƭǳŜΦ ¢ƘŀǘΩǎ ŀƭƭ ǿŜ ƴŜŜŘ ǘƻ Řƻ ǘƻ Ǉŀǎǎ ǘƘƛǎ ǘƘƛǊŘ ǘŜǎǘΦ LǘΩǎ ŀ ƴŜǿ
ǇŀǘǘŜǊƴΣ ŀƴŘ ǿŜ ŎŀƴΩǘ ƎŜƴŜǊŀƭƛǎŜ ǿƛǘƘ Ƨǳǎǘ ƻƴŜ ŜȄŀƳǇƭŜ of it.

After a spot of refactoring to localise the knowledge of how to get
CƛōƻƴŀŎŎƛ ƴǳƳōŜǊǎ ƛƴ ǘƘŜ ǘŜǎǘ ŎƻŘŜΣ ƛǘΩǎ ǘƛƳŜ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ ƻǳǊ ƴŜȄǘ
failing test. How about the fourth Fibonacci number?

 @Test
 public void fourthNumberIsTwo() {

 assertEquals (2, getFibonacciNumber(3));

 }

{ǳǊŜƭȅΣ ŀǘ ǘƘƛǎ ǇƻƛƴǘΣ ƛǘΩǎ ǘƛƳŜ ǘƻ ƛƳǇƭŜƳŜƴǘ ǘƘŜ ƎŜƴŜǊŀƭ ŀƭƎƻrithm?

!ŎǘǳŀƭƭȅΣ ƴƻΦ ¢ƘŜǊŜΩǎ ŀ ǎƛƳǇƭŜǊ ƎŜƴŜǊŀƭƛǎŀǘƛƻƴΦ

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return index - 1;

 }

!ƴŘ ƴƻǿ ƛǘΩǎ ǘƛƳŜ ǘƻ ǊŜŦŀŎǘƻǊ ƻǳǊ ǘŜǎǘ ŎƻŘŜ ŀƎŀƛƴ ǘƻ ŎƻƴǎƻƭƛŘŀǘŜ
these two examples of this new rule.

CODEMANSHIP | TDD |60

@Test
@Parameters ({ "1,2" , "2,3" })
public void thirdNumberOnIsIndexMinusOne(int expected,

int index) {
 assertEquals (expected, getFibonacciNumber(index));
}

²ƘŀǘΩǎ ƻǳǊ ƴŜȄǘ ŦŀƛƭƛƴƎ ǘŜǎt? Well, the fifth Fibonacci number has
an index of 4 and a value of 3, so our current code would actually
pass that test. But the sixth has an index and value both of 5, so
that would fail.

@Test
@Parameters ({ "1,2" , "2,3" , "5,5" })
public void thirdNumberOnIsIndexMinusOne(int expected,

int index) {
 assertEquals (expected, getFibonacciNumber(index));
}

The simplest solution that will pass all these tests is, in fact:

We discovered this algorithm by taking baby steps and doing the
simplest thing with each step, generalising with each new test.

It took us two tests to discover the rule about the first two Fibonacci
number being the same as their index. It took us three tests to
discover the rule about the third and above numbers being the sum
of the previous two.

!ǎ ŀ Ŧƛƴŀƭ ǎǘŜǇΣ ǿŜ ŀŘŘ ŀƴ άŜŘƎŜ ŎŀǎŜέ ǘŜǎǘ ǘƻ ǊŜǉǳƛǊŜ ŀ ƎǳŀǊŘ
condition for negative indexes.

@Test(expected=IllegalArgumentException. class)

public void indexMustBePositiveInteger() {

 getFibonacciNumber(- 1);

}

The resulting tests read like a specification for these three rules,
and provide good test assurance that the rules have been correctly

 public int getNumber(int index) {

 if (index < 2)

 return index;

 return getNumber(index - 1) + getNumber(index - 2);

 }

CODEMANSHIP | TDD |61

implemented. If we broke the code so that it breaks one of the
ǊǳƭŜǎΣ ǘƘŜǊŜΩǎ ŀ ǾŜǊȅ ƎƻƻŘ ŎƘŀƴŎŜ ŀǘ ƭŜŀǎǘ ƻƴŜ ǘŜst will fail, giving us
ŀ Ǿƛǘŀƭ ŜŀǊƭȅ ǿŀǊƴƛƴƎ ŀƴŘ ƳŀƪƛƴƎ ƛǘ ŜŀǎƛŜǊ ǘƻ ǇƛƴǇƻƛƴǘ ŜȄŀŎǘƭȅ ǿƘŀǘΩǎ
gone wrong.

hŦ ŎƻǳǊǎŜΣ ǿŜ άƪƴƻǿέ ǘƘŜ ƎŜƴŜǊŀƭ ǎƻƭǳǘƛƻƴΣ ōŜŎŀǳǎŜ ǿŜ ǘƘƻǳƎƘǘ
about it in advance. Thinking about designs in advance is a good
thing. I highly recommend it!

.ǳǘΣ ŜǾŜƴ ǘƘƻǳƎƘ ƛǘΩǎ ŀ ƎƻƻŘ ƛŘŜŀ ǘƻ ǘƘƛƴƪ ŀƘŜŀŘΣ ƛǘΩǎ ƴƻǘ ǎǳŎƘ ŀ ƎƻƻŘ
idea to code ahead. A trivial example like the Fibonacci calculator
tests our discipline in not leaping ahead for general solutions and
speculating about what the best design will be.

With programming, the devil is in the detail. Triangulating brings
more focus to getting those details right. Start simple, take baby
steps, and generalise only when you see a pattern.

TRIANGULATION PATTERNS

Observant readers may have noticed that there are loose patterns
to the way we generalise our solutions as we triangulate.

¶ To pass a single test, we might need to do nothing more
than return the result the tests expects as a literal value.

¶ To pass two tests that expect two different results, we
might generalise that literal value to a variable (or a
parameter).

¶ When that value is accessed by more than one method (so
our implementation has to remember it), a variable might
become a field.

¶ When a variable can have multiple values at the same time,
it can become a collection.

¶ When that collection is a sequence that follows a rule, it
can become a loop ς or a lambda expression - that
generates the collection, applying the rule to every
element.

CODEMANSHIP | TDD |62

!ǎ ȅƻǳ ƎŜǘ ƳƻǊŜ ŜȄǇŜǊƛŜƴŎŜ ǿƛǘƘ ¢55Σ ȅƻǳΩƭƭ ŘŜǾŜƭƻǇ ŀƴ ƛƴǎǘinctive
feel for these patterns of generalisation, learning to let the tests
guide your designs.

OBVIOUS IMPLEMENTATIONS ϧ ¢55 άD9!w{έ

Sometimes, though, triangulating is overkill. Imagine test-driving a
simple function to add two numbers together, for example.

 @Test

 public void sumOfTwoPlusTwoIsFour() {

 assertEquals (4, Maths. sum(2,2), 0);

 }

Would we go to the trouble of triangulating this, starting by just
ǊŜǘǳǊƴƛƴƎ ǘƘŜ ƭƛǘŜǊŀƭ ǊŜǎǳƭǘ пΚ !ǊƎǳŀōƭȅΣ ǘƘŜǊŜΩŘ ōŜ ƭƛǘǘƭŜ ǾŀƭǳŜ
gained for something this straightforward, so instead we might just
implement the simplest general solution.

 public static double sum(double i , double j) {

 return i + j ;

 }

Beware, though; it takes considerable experience to be able to
effectively judge when a design really is too trivial to take baby
steps. We recommend erring on the side of caution, especially
ǿƘŜƴ ȅƻǳΩǊŜ ǊŜƭŀǘƛǾŜƭȅ ƴŜǿ ǘƻ ¢55Φ ²ƛǘƘ ǘƛƳŜΣ ȅƻǳΩƭƭ ŘŜǾŜƭƻǇ ōŜǘǘŜǊ
judgement about how small your baby steps need to be.

Kent Beck, author of Test-Driven Development By Example, likens it
to pulling a bucket of water up from a well using a ratchet and
pulley.

CODEMANSHIP | TDD |63

The teeth on the ratchet gear
lock it in position every time we
raise the bucket by a certain
amount. This means all our
ŜŦŦƻǊǘ ǳǇ ǘƻ ǘƘŀǘ Ǉƻƛƴǘ ǿƻƴΩǘ ōŜ
wasted if we let go of the rope.

The heavier the bucket of
ǿŀǘŜǊΣ ǘƘŜ ǎƳŀƭƭŜǊ ǿŜΩƭƭ ǿŀƴǘ
the teeth to be, so we can pull it
up in shorter bursts of energy.

.ǳǘ ƛŦ ǿŜΩǊŜ ǊŀƛǎƛƴƎ ƻƴƭȅ ŀ
teaspoonful of water, we could
raise the bucket much faster
with a ratchet gear that has
larger teeth.

TDD is a bit like this. The tests lock our solution code in place, so we
ŘƻƴΩǘ Ǌƛǎƪ ǿŀǎǘƛƴƎ ŀƭƭ ƻǳǊ ŜŦŦƻǊǘ ōȅ ōǊŜŀƪƛƴƎ ǘƘŜ ŎƻŘŜ ǿŜ ŀƭǊŜŀŘȅ
wrote.

¢ƘŜ ƳƻǊŜ ŎƻƳǇƭŜȄ ŀƴŘ άƘŜŀǾȅέ ǘƘŜ ǇǊƻōƭŜƳ ǿŜΩǊŜ ǘǊȅƛƴƎ ǘƻ ǎƻƭǾŜΣ
the smaller the steps we might want to take. The simpler and more
trivial it is, the bigger the steps we can comfortably take.

¸ƻǳǊ ŀōƛƭƛǘȅ ǘƻ άǎǿƛǘŎƘ ƎŜŀǊǎέ ǿƘŜƴ ŘƻƛƴƎ ¢55 ǿƛƭƭ ƎǊƻǿ ŀǎ ȅƻǳ ƎŜǘ
more and more practice.

EXERCISE #8

Triangulate some code that sorts a set of playing cards into
ascending order (Aces count as 1). Start with the simplest example
you can think of (e.g., what happens if we sort a single card?), and
discover a design, taking the smallest steps forward possible.

CODEMANSHIP | TDD |64

12. REFACTORING

Summary:

¶ Refactoring is improving the internal design of software
without changing what it does

¶ Refactorings are small, atomic code re-writes that preserve
behaviour

¶ Many refactorings can be automated

¶ Run the tests after every ǊŜŦŀŎǘƻǊƛƴƎ ǘƻ ŎƘŜŎƪ ƴƻǘƘƛƴƎΩǎ
broken

¶ Refactorings are well-defined and have names like
Rename, Extract Method, Extract Class and Inline

¶ Pay special attention to code duplication, as it can reveal
useful abstractions

¶ In TDD, designs emerge through triangulation and
refactoring

¶ YŜŜǇ ǊŜŦŀŎǘƻǊƛƴƎ ǳƴǘƛƭ ȅƻǳΩǊŜ ƘŀǇǇȅ ƭŜŀǾƛƴƎ ǘƘŜ ŎƻŘŜ ŀǎ ƛǘ ƛǎ

{ƻ ŦŀǊΣ ǿŜΩǾŜ ǎŜŜƴ ǎŜǾŜǊŀƭ ŜȄŀƳǇƭŜǎ ƻŦ ǎƻƳŜǘƘƛƴƎ ǇǊƻƎǊŀƳƳŜǊǎ Ŏŀll
άǊŜŦŀŎǘƻǊƛƴƎέΦ

Refactoring is improving the internal design of our software without
changing what it does.

We refactor our code to:

¶ make it easier to understand

¶ make it simpler

¶ remove duplication

¶ localise the impact of making changes

More generally, we refactor the code to make it easier to change.

CODEMANSHIP | TDD |65

The danger in changing code is that we might break the software.
Refactoring minimises this risk in 3 ways:

1. Refactorings are small and atomic

The smaller the change, the less can go wrong. And if it does go
wrong, we want to be able to easily undo it. Refactorings
succeed or fail as a whole.

2. Refactorings preserve behaviour

After each refactoring, we want the code to do exactly what it
did before. We can check that it does using automated tests

3. Often, refactorings can be automated

Automated refactorings, which are supported to some extent
in most editors, help us by automatically updating the code so
that it should still work, and also by offering a single-step Undo
in case anything goes wrong

Think of your source code as a data structure ƳŀŘŜ ƻŦ άǎǘǳŦŦέ ƭƛƪŜ
classes, methods, parameters, variables, identifiers, statements,
expressions and so on.

A refactoring rewrites this άǎǘǳŦŦέ to make it easier to change in one
or more ways.

Very importantly, at the end of each refactoring, the code still
works. We check this by running our tests.

LǘΩǎ important to become familiar with the most commonly used
refactorings, and get practice at applying them to your code.

[ŜǘΩs look at some examples in Java using the popular Eclipse IDE
(www.eclipse.org).

RENAME

To make its meaning clearer, we may wish to rename a class, a
method, a variable and other things that have names. When we
change the name of, say, a method, that change breaks all of the

CODEMANSHIP | TDD |66

code that calls that method. So the Rename refactoring has to
update all of the references so that the code still works.

In my editor, I select the thing I want to rename (in this case, a
method ambiguously called get). I launch the context-sensitive
refactoring menu, and select the Rename refactoring.

CODEMANSHIP | TDD |67

I can edit the method name in place in my editor. Notice how, as I
type the new name, calls to get() are automatically updated. After
I hit Enter, the automated refactoring will save my source files.

As soon as the refactoring is done, I run my tests to make sure it
ƘŀǎƴΩǘ ōǊƻƪŜƴ ǘƘŜ ŎƻŘŜΦ

CODEMANSHIP | TDD |68

The method name makes more sense now, but I can still see
problems that will make this code harder to change.

[ŜǘΩǎ Řƻ ŀƴƻǘƘŜǊ ǊŜŦŀŎǘƻǊƛƴƎΦ

EXTRACT METHOD

CODEMANSHIP | TDD |69

The getIndexOf() method does rather a lot, and is difficult to read.
We can simplify things and make the code clearer by breaking the
method down.

I select a block of code that does a specific chunk of the work and
bring up the refactoring menu again.

A dialogue pops up for the Extract Method refactoring, prompting
me to give this new method a name. This is an opportunity to
convey what this block of code does, using the method name.

Notice how it automatically adds a parameter for a variable
fibonacci ǘƘŀǘΩǎ ŘŜŎƭŀǊŜŘ ōŜŦƻǊŜ ǘƘƛǎ ōƭƻŎƪ ƻŦ ŎƻŘŜΦ It has to pass
ǘƘƛǎ ǾŀƭǳŜ ƛƴΣ ƻǊ ǘƘŜ ŎƻŘŜ ǿƻƴΩǘ ǿƻǊƪΦ

It knows to return any data value that is referenced after this block
of code, too.

[ŜǘΩǎ ŎƻƳǇƭŜǘŜ ǘƘƛǎ ǊŜŦŀŎǘƻǊƛƴƎΦ

CODEMANSHIP | TDD |70

LƳƳŜŘƛŀǘŜƭȅΣ ǿŜ Ǌǳƴ ǘƘŜ ǘŜǎǘǎ ǘƻ ƳŀƪŜ ǎǳǊŜ ƴƻǘƘƛƴƎΩǎ ōǊƻƪŜƴΦ

There are still issues that might need addressing in our code. First
of all, some low-hanging fruit.

INLINE

Inlining replaces a reference to a thing with the thing itself. For
example, we could inline the local variable indexOfFibonacci,
ōŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ǊŜŀƭƭȅ ƴŜŜŘ ƛǘ ŀƴȅƳƻǊŜΦ

CODEMANSHIP | TDD |71

Again, we run the tests immediately to check everything still works.
This is a habit you must get into to refactor safely.

There are still more issues to address. Does this code really belong
ƛƴ ŀ ǘŜǎǘ ŦƛȄǘǳǊŜ ŀǘ ŀƭƭΚ tǊƻōŀōƭȅ ƴƻǘΦ [ŜǘΩǎ Ǉǳǘ ƛǘ ƛƴ ƛǘǎ own place, so
it can be more easily found and reused.

EXTRACT CLASS

Extract Class moves selected features of an existing class into their
own new class, and replaces them in the old code with an instance
of the new class.

aȅ ŜŘƛǘƻǊΩǎ ǊŜŦŀŎǘƻǊƛƴƎ ƳŜƴǳ ŘƻŜǎƴΩǘ ƘŀǾŜ ŀ ǇǊƻǇŜǊ ŀǳǘƻƳŀǘŜŘ
9ȄǘǊŀŎǘ /ƭŀǎǎΣ ǎƻ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ Ǝƻ ŀ ōƛǘ ŀǊƻǳƴŘ ǘƘŜ ƘƻǳǎŜǎ ƘŜǊŜ ǘƻ
make it happen. Many refactorings require us to perform a
sequence of smaller refactorings.

CODEMANSHIP | TDD |72

Our goal is to ς as much as possible ς keeping the code working. So
ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ Řƻ ǘƘƛǎ ƛƴ ŀ ƴǳƳōŜǊ ƻŦ ǎƳŀƭƭ ǎǘŜǇǎΣ ŀƴŘ Ǌǳƴ ǘƘŜ ǘŜǎǘǎ
after each step.

CƛǊǎǘΣ ƭŜǘΩǎ ǳǎŜ ǘƘŜ 9ȄǘǊŀŎǘ {ǳǇŜǊŎƭŀǎǎ ǊŜŦŀŎǘƻǊƛƴƎ ǘƻ ƳƻǾŜ
getIndexOf() and searchSequence() in a new class, from which the
test fixture will inherit so that it all still works.

This new superclass will just be a stepping stone. Ultimately we
ǿƻƴΩǘ ǿŀƴǘ ƛǘ ǘƻ ōŜ ŀ ǎǳǇŜǊŎƭŀǎǎ ƻŦ ǘƘŜ ǘŜǎǘ ŦƛȄǘǳǊŜΦ

A dialog pops up prompting us to give this new superclass a name,
and to select the features we want to move into it.

CODEMANSHIP | TDD |73

In thƛǎ ƛƴǎǘŀƴŎŜΣ ǘƘŀǘΩǎ ŀƭƭ ǿŜ ƴŜŜŘ ǘƻ ǎǇŜŎƛŦȅ ς though the Extract
Superclass dialog has a lot more options ς so we just click Finish.

It warns us that the visibility of getIndexOf() need to be changed for
ǘƘŜ ǎǳōŎƭŀǎǎ ǘƻ ŎƻƴǘƛƴǳŜ ǳǎƛƴƎ ƛǘΦ ¢Ƙƛǎ ƛǎ ŦƛƴŜΦ LǘΩǎ just to make sure
the code still works.

CODEMANSHIP | TDD |74

Again, we run the tests at this point.

Now that we have a Fibonacci class, we want to change the tests so
they invoke methods on an instance of that class, and not on the
superclass.

We can achieve this using Find/Replace.

CODEMANSHIP | TDD |75

We replace all the calls to getIndexOf() on the superclass with calls
to the same method on a new Fibonacci object.

CODEMANSHIP | TDD |76

And run the tests again.

CƛƴŀƭƭȅΣ ǘƘŜǊŜΩǎ ƴƻ ƴŜŜŘ ŀƴȅ ƭƻƴƎŜǊ ŦƻǊ FibonacciTests to extend
Fibonacci, so we can remove that stepping stone.

!ƴŘ ǘƘŜƴΧ ȅŜǇΣ ȅƻǳ ƎǳŜǎǎŜŘ ƛǘΧ w¦b ¢I9 ¢9{¢{Φ

THE REFACTORING MENU

The Eclipse editor offers a useful range of automated refactorings.

CODEMANSHIP | TDD |77

CODEMANSHIP | TDD |78

Support for automated refactorings varies from editor to editor and
ƭŀƴƎǳŀƎŜ ǘƻ ƭŀƴƎǳŀƎŜΦ LǘΩǎ ǘȅǇƛŎŀlly better in languages that have
compile-time type checking than in dynamic languages, because -
in some refactorings - the tool needs to know what types of objects
are involved.

In scripting languages like JavaScript and Ruby, programmers may
have to leaǊƴ Ƙƻǿ ǘƻ Řƻ ǎƻƳŜ ǊŜŦŀŎǘƻǊƛƴƎǎ ōȅ ƘŀƴŘΦ LǘΩǎ ƛƳǇƻǊǘŀƴǘ
to be especially disciplined in these cases.

DUPLICATION & EMERGENT DESIGN

!ƭǘƘƻǳƎƘ ƛǘΩǎ ƴƻǘ ŀǎ ƛƳǇƻǊǘŀƴǘ ŀǎ ǊŜŀŘŀōƛƭƛǘȅ ŀƴŘ ǎƛƳǇƭƛŎƛǘȅΣ ǘƘŜ
duplication in our code ς including our test code ς offers useful
clues about what might be a good design for our solution. This is
because the opposite of duplication is reuse.

When we see two blocks of code that are almost the same, we can
extract a parameterised method that performs the common logic.
When we see two classes that are very similar, we can extract a
common base class. Or if they do similar things, but in different
ways, we can extract a common interface.

Duplication is often a good thread to pull on, as it can reveal
abstractions that will make our designs better.

For this reason, many people recommend we refactor to remove
duplication as the third step in the TDD cycle.

More generally, a design is revealed to us as we refactor. A method
may be too long or doing too many things, so we break it up into
multiple methods. A class may be getting too big or have too many
responsibilities, so we split it up into new classes.

Starting from the single simplest solution, a complex design can
emerge through the process of triangulation and refactoring. The
aim is to discover the design that will pass the tests and be easy to
change.

CODEMANSHIP | TDD |79

WHEN ARE WE DONE?

In our Fibonacci example, we still have issues we might want to
address left in our code. The getIndexOf() method is pretty long,
and does a lot. We could break it down by extracting the different
pieces of work into their own private helper methods. Also, our test
fixture mixes a single parameterised test with several ordinary tests
for edge cases. The edge case tests are run unnecessarily for every
parameterised test case, leaving potential confusion about how
many tests there really are.

When it comes to the quality of our code, we often have the best
of intentions to go back and code issues that might get in our way
later.

Inspection of hundreds of code bases, however, teaches us that ς
nine times out of ten ς we never actually get around to it fixing
problems we leave behind.

For that reason, I strongly recommend that you refactor until
ȅƻǳΩǊŜ ƘŀǇǇȅ ƭŜŀǾƛƴƎ ǘƘŜ ŎƻŘŜ ŀǎ ƛǘ ƛǎ ς because you very probably
will leave it like that forever.

That makes the third step in the TDD cycle extremely important. It
reminds us to clean up our code to make it as readable, as simple,
as free of duplication and as modular as we can before moving on
to the next failing test.

EXERCISE #9

Look through the code you wrote for earlier exercises in this book
ŦƻǊ ŀƴȅǘƘƛƴƎ ǘƘŀǘ ȅƻǳΩǊŜ ƴƻǘ млл҈ ƘŀǇǇȅ ǿƛǘƘ ς names you think
could be made clearer, methods that do more than one thing,
nested IF statements, and so on.

Refactor the code until your confident that it will be easy to
understand and easy to change.

CODEMANSHIP | TDD |80

Explore the refactoring menu in your editor and try each
automated refactoring works on a copy of your code.

!ƴŘ 5hbΩ¢ ChwD9¢ ¢h Y99t w¦bbLbD ¢I9 ¢9{¢{Η

CODEMANSHIP | TDD |81

13. DESIGN PRINCIPLES

Summary:

¶ A Simple Design (in order of priority):
o Works (i.e., passes all the tests)
o Is easy to understand
o Has minimal duplication
o Is as simple as possible

¶ 5ŜǎƛƎƴ ŎƭŀǎǎŜǎ ǘƘŀǘ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪΣ ǎƘŀǊƛƴƎ ŀǎ ƭƛǘǘƭŜ ƛƴǘŜǊƴŀƭ
detail as possible

¶ Give methods and classes a single responsibility, so they
offer more possibilities for combinations and reuse

¶ Compose objects from the outside, using dependency
injection, to offer greater flexibility for design and testing

¶ Expose client-specific interfaces to hide methods that
client code ŘƻŜǎƴΩǘ ƴŜŜŘ ǘƻ ǳǎŜ

¶ Use contract tests to ensure different implementations of
the same abstraction fulfil the contract of their super-type

Lƴ ǇǊŜǾƛƻǳǎ ŎƘŀǇǘŜǊǎΣ ǿŜΩǾŜ ǘƻǳŎƘŜŘ ƻƴ ǎƻƳŜ Ǝƻŀƭǎ ŦƻǊ ǘƘŜ ŘŜǎƛƎƴ
of our code that will make it easier to change, so we can keep
adding new tests and new features, and sustain the pace of
development for longer.

²ŜΩǊŜ ƎƻƛƴƎ ǘƻ ŘǿŜƭƭ ƻƴ ǘƘŜ ǇǊƛƴŎƛǇƭŜǎ ƻŦ good designΣ ŀǎ ǘƘŜȅΩǊŜ
important enough to warrant a chapter all of their own.

SIMPLE DESIGN

Simple Design, also popularised by Kent Beck, is a set of design
principles that developers can apply to most any kind of software.

CODEMANSHIP | TDD |82

Rather than having to learn a whole encyclopaedia of design rules
and design patterns, Simple Design sets just four goals, in order of
importance.

1. The code works
2. The code is easy to understand
3. The code has minimal duplication
4. The code is as simple as possible

THE CODE WORKS

Most important of all is that the code works. We check that it does
ōȅ ǊǳƴƴƛƴƎ ƻǳǊ ǘŜǎǘǎΦ LŦ ƛǘ ŘƻŜǎƴΩǘ Ǉŀǎǎ ǘƘŜ ǘŜǎǘǎΣ ŦƛȄƛƴƎ ǘhat is priority
number one.

THE CODE IS EASY TO UNDERSTAND

²ƘŜƴ ǿŜΩǊŜ ƘŀǇǇȅ ǘƘŜ ŎƻŘŜ ǿƻǊƪǎΣ ǿŜ ƴŜȄǘ ŎƻƴŎŜǊƴ ƻǳǊǎŜƭǾŜǎ ǿƛǘƘ
Ƙƻǿ Ŝŀǎȅ ƛǘ ƛǎ ǘƻ ǳƴŘŜǊǎǘŀƴŘΦ LǘΩǎ ŜǎǘƛƳŀǘŜŘ ŘŜǾŜƭƻǇŜǊǎ ǎǇŜƴŘ
between 50-80% of our time just reading code. Time invested in
making the code clearer is almost always profitable later.

THE CODE HAS MINIMAL DUPLICATION

LŦ ǿŜΩǊŜ ǎŀǘƛǎŦƛŜŘ ǘƘŀǘ ǘƘŜ ŎƻŘŜ ǿƻǊƪǎΣ ǿŜ ǘǳǊƴ ƻǳǊ ŀǘǘŜƴǘƛƻƴ ǘƻ
duplication. The mantra to remember here is 5ƻƴΩǘ wŜǇŜŀǘ ¸ƻǳǊǎŜƭŦ
(D.R.Y.). When we have to change duplicated code, we have to
make that change multiple times.

One exception to D.R.Y. is when a bit of duplication makes the code
easier to understand. In our test fixtures, for example, I left in some
duplication ς separate test methods for cases that could have been
incorporated into an existing parameterised test ς to make it easier
to see this was a different rule being tested, and not just a different
example of the same rule.

THE CODE IS AS SIMPLE AS POSSIBLE

Simpler designs are quicker to get working, easier to understand,
and less likely to go wrong. For all these reasons, TDD recommends
we do the simplest thing possible that will pass our tests.

CODEMANSHIP | TDD |83

Again, the exception is when simplicity conflicts with our higher-
priority design goals. Sometimes the simplest ǎƻƭǳǘƛƻƴ ƛǎƴΩǘ
necessarily the easiest to understand, for example. On occasion, it
may be better to solve a problem a longer way, if that longer way
can be understood faster.

¢9[[Σ 5hbΩ¢ !{Y

The four principles of Simple Design take us a long way towards a
ƎƻƻŘ ŘŜǎƛƎƴΣ ǿƘŜƴ ǘƘŜȅΩǊŜ ŀǇǇƭƛŜŘ ǊƛƎƻǊƻǳǎƭȅ ǘƻ ǘƘŜ ŎƻŘŜ ŀǎ ƛǘ
grows.

.ǳǘ {ƛƳǇƭŜ 5ŜǎƛƎƴ ŘƻŜǎƴΩǘ ŘƛǊŜŎǘƭȅ ŀŘŘǊŜǎǎ ƻƴŜ ǇƻǘŜƴǘƛŀƭ ƻōǎǘŀŎƭŜ
ǘƻ ŎƘŀƴƎƛƴƎ ƻǳǊ ŎƻŘŜ ǘƘŀǘΩǎ ŀŎǘǳŀƭƭȅ ǇǊŜǘǘȅ ƛƳǇƻǊǘŀƴǘΥ
dependencies.

Consider a class that calculates insurance premiums for motorists.
To decide what premiums to apply it needs to know the age of the
motorist, their gender (men tend to have more accidents), how
ƭƻƴƎ ǘƘŜȅΩǾŜ ōŜŜƴ ŘǊƛǾƛƴƎ ƭŜƎŀƭƭȅΣ and how many points they have
ƻƴ ǘƘŜƛǊ ŘǊƛǾŜǊΩǎ ƭƛŎŜƴǎŜΦ

CODEMANSHIP | TDD |84

public class InsuranceCalculator {

 private Motorist motorist ;

 public InsuranceCalculator(Motorist motorist) {
 this . motorist = motorist;
 }

 public double calculatePremium(double carValue) {
 License license = motorist .getLicense();

 double premiumPercent = 0;

 premiumPercent +=

calculateAgePremium(

calculateAge(motorist .getDateOfBirth()));
 premiumPercent +=

calculateGenderPremium(motorist .getGender());
 int yearsOfExperience =

calculateExperience(license.getDateIssued());
 premiumPercent +=

calculateExperiencePremium(yearsOfExperience);
 premiumPercent +=

calculatePointsPremium(license.getPoints());

 return carValue * premiumPercent;
 }

To get these pieces of information, it has to ask Motorist and
License for them. [ŜǘΩǎ ǾƛǎǳŀƭƛǎŜ the interactions between our
objects using a UML sequence diagram:

CODEMANSHIP | TDD |85

Because InsuranceQuote is doing all the work, but Motorist and
License have all the data, this design creates a lot of low-level
coupling between our objects.

The more objects know about each other, the more likely it is that
a change to one object will affect others. Changing License might
break InsuranceQuote, which might in turn break any code that
depends on InsuranceQuote.

Another goal of good design is to localise the impact of change. We
can achieve this by, as much as possible, internalising dependencies
within classes, which reduces the coupling between them.

Code that ƴŜŜŘǎ ǘƻ ƪƴƻǿ ŀ ƳƻǘƻǊƛǎǘΩǎ ŘŀǘŜ ƻŦ ōƛǊǘƘ ǎƘƻǳƭŘ ōŜ
packaged where that data is. Code that needs to know how many
Ǉƻƛƴǘǎ ǘƘŜǊŜ ŀǊŜ ƻƴ ŀ ƳƻǘƻǊƛǎǘΩǎ ƭƛŎŜƴǎŜ ǎƘƻǳƭŘ ōŜ ǇŀŎƪŀƎŜŘ ǿƘŜǊŜ
that points data is.

More generally, put the work where the data is.

[ŜǘΩǎ Ǌefactor our code to reduce the coupling between the classes,
by putting our calculations in the same classes as the data they use.

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

getLicense()

getDateOfBirth()

getGender()

getDateIssued()

getPoints()

CODEMANSHIP | TDD |86

public class InsuranceCalculator {

 private Motorist motorist ;

 public InsuranceCalculator(Motorist motorist) {

 this . motorist = motorist;

 }

 public double calculatePremium(double carValue) {

 return motorist .calculatePremium(carValue);

 }

}

Instead of asking for the data, InsuranceQuote now delegates the
work to Motorist.

public class Motorist {

 private final String dateOfBirth ;
 private final Gender gender ;
 private final License license ;

 public Motorist(String dateOfBirth,
Gender gender,

License license) {
 this . dateOfBirth = dateOfBirth;
 this . gender = gender;
 this . license = license;
 }

 public double calculatePremium(double carValue) {
 return calculateMotoristPremium(carValue) +

license .calculatePremium(carValue);
 }

 private double calculateMotoristPremium(double carValue) {
 double premiumPercent = calculateAgePremium()
 + calculate Gender Premium ();
 return premiumPercent * carValue;
 }

Motorist does the work relating to what it knows: dateOfBirth and
gender. It delegates the rest of the work to License, because that
class has the rest of the data.

CODEMANSHIP | TDD |87

public class License {

 private int points ;
 private final String dateIssued ;

 public License(String dateIssued){
 this . dateIssued = dateIssued;
 }

 double calculatePremium(double carValue) {
 return calculateExperiencePremium(carValue) +

calculatePointsPremium(carValue);
 }

Instead of asking Motorist and License for their data,
InsuranceQuote ǘŜƭƭǎ ǘƘŜƳ ǘƻ Řƻ ǘƘŜ ǿƻǊƪ ǘƘŜƳǎŜƭǾŜǎΦ ¢ƘŀǘΩǎ ǿƘȅ
ǘƘƛǎ ǎǘȅƭŜ ƻŦ ŘŜǎƛƎƴ ƛǎ ǎƻƳŜǘƛƳŜǎ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ά¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪέΦ

When we visualise the interactions between the different objects
after this refactoring, it looks like this:

Just at a glance, we can see there are far fewer object couplings.
bƻǘŜ ǘƘŀǘΣ ōŜŎŀǳǎŜ ǿŜΩǊŜ ǎƘŀǊƛƴƎ ƭŜǎǎ ŘŀǘŀΣ ǘƘŜǊŜΩǎ ƴƻ ƴŜŜŘ ŦƻǊ ŀƭƭ
those getter methods any more.

This design principle goes by several names, including data hiding
and encapsulation. All you need to remember is that the less
objects know about each other, the better.

SINGLE RESPONSIBILITY

Consider a method that credits a bank account:

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

calculatePremium(carValue)

calculatePremium(carValue)

CODEMANSHIP | TDD |88

 public void credit(double amount){
 this . balance += amount;
 SimpleDateFormat sdfDate =
 new SimpleDateFormat("yyyy - MM- dd HH:mm:ss");
 Date now = new Date();
 String dateTime = sdfDate.format(now);
 String creditXml = "<credit>" +
 " <account>" + accountNumber + "</account>" +
 " <amount>" + amount + "</amount>" +
 " <datetime>" + dateTime + "</dateTime>" +
 "</credit>" ;
 AccountLogger. log (creditXml);
 rewardPoints += Math. floor (amount/100);
 }

This method does a whole bunch of stuff.

¶ Adds the amount to the balance

¶ Formats the current date & time

¶ Creates an XML string that represents this transaction for
logging

¶ Calculates and adds reward points at 1% of the credit
amount

Not only does it make this method harder to understand, but what
happens if we want to format the current date and time for some
other purpose? What happens if we want to calculate reward
points for other kinds of transactions?

As it stands, credit() is an all-or-ƴƻǘƘƛƴƎ ŀŦŦŀƛǊΦ ²Ŝ ŘƻƴΩǘ ƎŜǘ ǘƘŜ
option to reuse any of its logic by itself, and this can present a
barrier to change.

¢ƻ ōŜǘǘŜǊ ŜȄǇƭŀƛƴΣ ƘŜǊŜΩǎ ŀ ǘƘƻǳƎƘǘ ŜȄǇŜǊƛƳŜƴǘΥ Ƙƻǿ Ƴŀƴȅ ŘƛŦŦŜǊŜƴǘ
ǿŀȅǎ Ŏŀƴ ǿŜ ŎƻƳōƛƴŜ ǘƘŜ ǎǘǊƛƴƎ ά!./5έΚ Only oneΦ LǘΩǎ ŀƭǿŀȅǎ
ά!./5έΦ

Iƻǿ Ƴŀƴȅ ŘƛŦŦŜǊŜƴǘ ǿŀȅǎ Ŏŀƴ ǿŜ ŎƻƳōƛƴŜ ά!.έ ŀƴŘ ά/5έΚ Four.
We can ƳŀƪŜ ά!.έΣ ά/5έΣ ά!./5έ ŀƴŘ ά/5!.έΦ

Iƻǿ Ƴŀƴȅ ŘƛŦŦŜǊŜƴǘ ǿŀȅǎ Ŏŀƴ ǿŜ ŎƻƳōƛƴŜ ά!έΣ ά.έΣ ά/έ ŀƴŘ ά5έΚ
Sixty four.

CODEMANSHIP | TDD |89

.ȅ ōǊŜŀƪƛƴƎ ά!./5έ ƛƴǘƻ ά!έΣ ά.έΣ ά/έ ŀƴŘ ά5έ ǿŜ ƎƛǾŜ ƻǳǊǎŜƭǾŜǎ
sixty four times as many possible combinations of letters.

Likewise, by breaking credit() down into four separate methods,
each with one distinct job, we create many more opportunities to
create new logic by combining one or all of those methods.

 public void credit(double amount){

 updateBalance(amount);

 String dateTime = formatCurrentDateTime();

 AccountLogger. log (serialize(amount, dateTime));

 rewardPoints += calculateRewardPoints(amount);

 }

credit() is now what we call a composed method; that is, a method
composed of calls to other methods. The method names tell the
story of what work is being done, but the actual work is delegated
to these new methods.

This makes credit() easier to understand, and it also means that we
can write new code reusing methods like
formatCurrentDateTime(), serialize() and calculateRewardPoints().

We could also extend our account class, and override those
individual methods without having to change the code in credit().
This refactored design opens up many new possibilities.

The same principle applies at the class level; should we have to use
an account every time we want to format the current date and
time? That smacks a little of buying a Mercedes just to use the
cigarette lighter.

And if we wanted to change the format of the current date and
time, should we have to edit ς and risk breaking ς the account
class? There will be other classes depending on it. It might break
them, too. Better, surely, for that formatting code to go in its own
class, where we can change it by itself.

CODEMANSHIP | TDD |90

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =

new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger. log (serialize(amount, dateTime));
 rewardPoints += calculateRewardPoints(amount);
 }

²ƘƛƭŜ ǿŜΩǊŜ ŀōƻǳǘ ƛǘΣ ǎƘƻǳƭŘ ǘƘŜ ŀŎŎƻǳƴǘ Ŏƭŀǎǎ ōŜ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ
creating the XML string? !ƎŀƛƴΣ ƛǘΩǎ ŦƻǊŜǎŜŜŀōƭŜ ǿŀƴǘƛƴƎ ǘƻ ŎƘŀƴƎŜ
the XML format independently of how the account works. So, that,
too, belongs in its own class.

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger. log (
 new XmlSerializer(). serialize(this,

amount,

dateTime));
 rewardPoints += calculateRewardPoints(amount);
 }

I can also see us needing to change how reward points are
ŎŀƭŎǳƭŀǘŜŘ ƛƴŘŜǇŜƴŘŜƴǘƭȅ ƻŦ Ƙƻǿ ŀ ōŀƴƪ ŀŎŎƻǳƴǘ ǿƻǊƪǎΦ [ŜǘΩǎ
extract a class for that, too.

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 new DateTimeFormatter().formatCurrentDateTime();
 AccountLogger. log (
 new XmlSerializer(). serialize(this,

amount,

dateTime));
 rewardPoints +=

new RewardPointsCalculator().calculate(amount);
 }

Extracting these separate responsibilities into their own classes
gives us more options for reusing and extending our code. For
example, if we wanted to, we could package DateTimeFormatter in
its own library and reuse it on other projects.

CODEMANSHIP | TDD |91

SWAPPABILITY & DEPENDENCY INJECTION

Splitting credit() into separate methods, and then moving some of
those methods into new classes ς each with a distinct job ς has
bought us considerably more flexibility to keep evolving our design.

But we need to go further to buy us the kind of flexiōƛƭƛǘȅ ǿŜΩǊŜ
ƎƻƛƴƎ ǘƻ ƴŜŜŘ ƭŀǘŜǊΣ ŀǎ ǿŜΩƭƭ ŘƛǎŎƻǾŜǊ ƛƴ ǳǇŎƻƳƛƴƎ ŎƘŀǇǘŜǊǎΦ

What happens when we want to use different date-time formats
for different kinds of output? What happens when we want to
represent our credit transaction in different report formats, like
CSV or HTML? What happens when we want to calculate reward
points differently in different countries?

¢ƘŜǊŜΩǎ ƴƻ Ŝŀǎȅ ǿŀȅ ǘƻ ƎŜǘ BankAccount to use a different
implementation of DateTimeFormatter, XmlSerializer or
RewardPointsCalculator.

Imagine we have two different implementations of a
DateTimeFormatter interface, one for US date formats and one for
the UK.

public interface DateTimeFormatter {

 public abstract String formatCurrentDateTime();

}

Similarly, imagine we have a US reward points calculator and a UK
calculator that both implement a RewardPointsCalculator
interface.

public interface RewardPointsCalculator {

 public abstract double calculate(double amount);

}

Finally, imagine we have two ways of representing a credit
transaction: as XML and as HTML, both of which implement a
Serializer interface.

CODEMANSHIP | TDD |92

public interface Serializer {

 public abstract String serialize(

BankAccount acccount,
double amount,
String dateTime);

}

How about, instead of instantiating these objects inside
BankAccount, we pass them into the constructor?

public class BankAccount {

 private double balance ;
 private final String accountNumber ;
 private int rewardPoints ;
 private final DateTimeFormatter dateTimeFormatter ;
 private final Serializer serializer ;
 private final RewardPointsCalculator rewardPointsCalculator ;

 public BankAccount(String accountNumber,
 DateTimeFormatter dateTimeFormatter,
 Serializer serializer,
 RewardPointsCalculator rewardPointsCalculator) {
 this . accountNumber = accountNumber;
 this . dateTimeFormatter = dateTimeFormatter;
 this . serializer = serializer;
 this . rewardPointsCalculator = rewardPointsCalculator;
 }

 public void credit(double amount){
 updateBalance(amount);
 String dateTime =
 dateTimeFormatter .formatCurrentDateTime();
 AccountLogger. log (
 serializer .serialize(this, amount, dateTime));
 rewardPoints += rewardPointsCalculator .calculate(amount);
 }

BankAccount is now composed from the outside by whichever code
calls the constructor. If we abstract the classes it collaborates with,
binding BankAccount to our pure interfaces, it becomes possible to
vary BankAccountΩǎ ŎƻƳǇƻǎƛǘƛƻƴ ŘȅƴŀƳƛŎŀƭƭȅ ōȅ ǇƭǳƎƎƛƴƎ ƛƴ
different implementations.

CODEMANSHIP | TDD |93

BankAccount accountUS = new BankAccount("12345678" ,

 new USDateTimeFormatter(),

 new HtmlSerializer(),

 new USRewardPointsCalculator());

BankAccount accountUK = new BankAccount("23456789" ,

 new UKDateTimeFormatter(),

 new XmlSerializer(),

 new UKRewardPointsCalculator());

When we compose objects from the outside, by passing their
collaborators in to the constructor or as method parameters, we
call that dependency injection.

We now have the ability to swap collaborators easily, and this gives
us even greater flexibility for future changes.

!ǎ ǿŜΩƭƭ ǎŜŜ ƛƴ ǘƘŜ ŎƘŀǇǘŜǊ ƻƴ Test Doubles, it also comes in very
useful for writing fast-running automated tests by allowing us to
test our code against pretend versions of things like database
connections and web service calls.

C!Y9 L¢ Ψ¢L[¸h¦ a!YE IT

It also allows us to defer thinking about the design of other parts of
ƻǳǊ ǎƻŦǘǿŀǊŜ ǿƘƛƭŜ ǿŜ ŦƻŎǳǎ ƻƴ ǘƘŜ ƭƻƎƛŎ ƻŦ ǘƘŜ ǇŀǊǘ ǿŜΩǊŜ working
onΦ 9ΦƎΦΣ tŜǊƘŀǇǎ ǿŜ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ Ƙƻǿ ǊŜǿŀǊŘ Ǉƻƛƴǘǎ
are calculated. We can inject a placeholder for a calculator and
carry on testing credit()

CLIENT-SPECIFIC INTERFACES

The less objects in our software know about each other, the better.
!ǎ ǿŜƭƭ ŀǎ ƘƛŘƛƴƎ ƛƴǘŜǊƴŀƭ ŦŜŀǘǳǊŜǎ ōȅ ŀǇǇƭȅƛƴƎ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪΣ ǿŜ
ŀƭǎƻ ƴŜŜŘ ǘƻ ƘƛŘŜ ŜȄǘŜǊƴŀƭ ŦŜŀǘǳǊŜǎ ǘƘŀǘ ƻǳǊ ŎƭŀǎǎŜǎ ŘƻƴΩǘ ƴŜŜŘ ǘƻ
use.

To illustrate, look at this code from a community video library.

CODEMANSHIP | TDD |94

public class Library {

 private final List< VideoTitle > titles ;

 public Library(){
 titles = new ArrayList<>();
 }

 public boolean hasTitle(String name){
 for (VideoTitle title : titles) {
 if (title.getName().equals(name)){
 return true ;
 }
 }
 return false ;
 }

 public void add(VideoTitle title){
 titles .add(title);
 }
}

public class VideoStats {

 private final VideoTitle title ;

 public VideoStats(VideoTitle title){
 this . title = title;
 }

 public double averageRating(){
 List<Rating> ratings = title .getRatings();
 double totalRating = 0;
 for (Rating rating : ratings) {
 totalRating += rating.getValue();
 }
 return totalRating/ratings.size();
 }
}

Both Library and VideoStats use VideoTitle, but they use different
methods of it. Library just needs to know the name of the title,
while VideoStats just needs to access its ratings.

If we decide to change the details of either of these methods of
VideoTitle, then both clients will be affected.

CODEMANSHIP | TDD |95

²Ŝ Ŏŀƴ ƘƛŘŜ ƳŜǘƘƻŘǎ ǘƘŀǘ ŎƭƛŜƴǘǎ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǎŜŜ ōȅ ǎǇƭƛǘǘƛƴƎ ǳǇ
the interface, creating client-specific interfaces for Library and
VideoStats that only expose the methods they need.

public class VideoTitle implements Named, Rated {

 private final String name;

 private final List<Rating> ratings ;

 public VideoTitle(String name){

 this . name = name;

 this . ratings = new ArrayList<>();

 }

 @Override

 public String getName() {

 return name;

 }

 @Override

 public List<Rating> getRatings() {

 return ratings ;

 }

 public void rate(int value){

 ratings .add(new Rating(value));

 }

}

Note that the names of these new interfaces reflect the role the
objects play with respect to each client. These are not the names
of άthingsέ, like Library and VideoTitle.

Now we can refactor Library and VideoStats so they depend only
on the interfaces they require.

CODEMANSHIP | TDD |96

public class Library {

 private final List<Named> titles ;

 public Library(){

 titles = new ArrayList<>();

 }

 public boolean hasTitle(String name){

 for (Named title : titles) {

 if (title.getName().equals(name)){

 return true ;

 }

 }

 return false ;

 }

 public void add(Named title){

 titles .add(title);

 }

}

public class VideoStats {

 private final Rated title ;

 public VideoStats(Rated title){

 this . rated = rated;

 }

 public double averageRating(){

 List<Rating> ratings = title .getRatings();

 double totalRating = 0;

 for (Rating rating : ratings) {

 totalRating += rating.getValue();

 }
 return totalRating/ratings.size();

 }

}

bƻǘƛŎŜ ǘƘŀǘ ǿŜ ŘƛŘƴΩǘ ƛƴŎƭǳŘŜ ǘƘŜ ƳŜǘƘƻŘ rate() on the Rated
interface. Although you might think it makes sense to include it,
based ƻƴ ǘƘŜ ƴŀƳŜΣ ƛƴ ŦŀŎǘ ǘƘŜǊŜΩǎ ƴƻ ǊŜŀǎƻƴ ŦƻǊ VideoStats to be
exposed to it. Some other client uses that method, and if rate() is
the only method it uses, we could again create a client-specific
interface called, say, Rateable.

CODEMANSHIP | TDD |97

POLYMORPHISM & CONTRACT TESTING

When our objects implement abstractions, like pure interfaces, or
extend existing classes and override their ƳŜǘƘƻŘǎΣ ǘƘŜǊŜΩǎ ƻƴŜ
thing we need to be mindful of ς that they fulfil the original
contracts of their super-types.

For example, there are many different ways we could sort an array
of numbers, ranging from the brute force method of looping
ǘƘǊƻǳƎƘ ǘƘŜ ŀǊǊŀȅ ǳƴǘƛƭ ǿŜ ŦƛƴŘ ǿƘŀǘ ǿŜΩǊŜ ƭƻƻƪƛƴƎ ŦƻǊΣ ǘƻ ŦŀǎǘŜǊ
sorting algorithms like Bubble Sort and Insertion Sort.

But, however we do it, the end result must be the same.

public abstract class Sort {

 public abstract int [] sortAsc(int [] input);

 void swap(int [] input, int index1, int index2) {

 int first = input[index1];

 int second = input[index2];

 input[index1] = second;

 input[index2] = first;

 }

}

In this design, we have an abstract base class for sorting arrays of
integers. Imagine we started by test-driving an implementation of
Bubble Sort, and then moved on to an implementation of Insertion
Sort, and extracted a common superclass with the shared swap()
method and an abstract sortAsc() method they each override.

CODEMANSHIP | TDD |98

public class BubbleSort extends Sort {

 @Override
 public int [] sortAsc(int [] input) {

 boolean sorted = false ;

 while (!sorted){

 sorted = true ;

 for (int i = 0; i < input. length - 1; i++) {

 if (input[i] > input[i+1]){

 swap(input, i, i+1);

 sorted = false ;

 }

 }

 }
 return input;

 }

}

public class InsertionSort extends Sort {

 @Override
 public int [] sortAsc(int [] input) {

 for (int i = 0; i < input. length - 1; i++) {

 for (int j = i+1;j > 0;j --){

 if (input[j] < input[j - 1]){

 swap(input, j, j - 1);

 }

 }

 }

 return input;

 }

}

After refactoring the duplication between these two classes, we
should also refactor duplication between their test fixtures. So we
end up extracting a common test base class.

CODEMANSHIP | TDD |99

@RunWith(JUnitParamsRunner. class)
public abstract class SortTests {

 private Object data() {
 return new Object[][]{
 { new int []{1}},
 { new int []{2,1}},
 { new int []{3,2,1}},
 { new int []{2,3,1}},
 { new int []{5,2,3,4,1}},
 { new int []{2,1,2,3}},
 { new int []{12,2,6,1,7,6,13,0}}
 };
 }

 @Test
 @Parameters (method= "data")
 public void arrayIsSortedInAscendingOrder(int [] input) {
 int [] output = createSort().sortAsc(input);
 assertThat (Arrays. asList (output),

containsInAnyOrder (input));
 for (int i = 0; i < output. length - 1; i++) {
 assertThat (output[i],

is (lessThanOrEqualTo (output[i + 1])));
 }
 }

 abstract Sort createSort();

}

Note the abstract method createSort(); this is a factory method for
instantiating sorting implementations that we override in the test
fixtures that extend SortTests.

CODEMANSHIP | TDD |100

public class BubbleSortTests extends SortTests {

 @Override
 protected Sort createSort() {
 return new BubbleSort();
 }
}

public class InsertionSortTests extends SortTests {

 @Override
 protected Sort createSort() {
 return new InsertionSort();
 }
}

The tests in SortTests effectively define an abstract contract that all
sorting implementations must satisfy, no matter how they work
internally. This test design technique is therefore sometimes
referred to as contract testing.

CODEMANSHIP | TDD |101

EXERCISE #10

Test-drive some code that manages the stock and orders of a CD
warehouse. Customers can buy CDs, searching on the title and the
artist. Record labels send batches of CDs to the warehouse. Keep a
stock count of how many copies of each title are in the warehouse.
Customers can only order titles that are in stock. Use dependency
injection to fake credit card payment processing, so we can get on
with our CD warehouse design without worrying about how that
will be done.

/ǳǎǘƻƳŜǊǎ Ŏŀƴ ƭŜŀǾŜ ǊŜǾƛŜǿǎ ŦƻǊ /5ǎ ǘƘŜȅΩǾŜ ōƻǳƎƘǘ ǘƘǊƻǳƎƘ ǘƘŜ
warehouse, which gives each title an integer rating from 1- 10 and
the text of their review if they want to say more.

!ǎ ǿŜƭƭ ŀǎ ŀǇǇƭȅƛƴƎ ŀƭƭ ƻŦ ǘƘŜ ƛŘŜŀǎ ǿŜΩǾŜ ŎƻǾŜǊŜŘ ŀōƻǳǘ ¢55 ǎƻ ŦŀǊΣ
make sure your code is:

¶ Working

¶ Easy to understand

¶ Has minimal duplication

¶ Is as simple as possible

ΧŀƴŘ ƛǎ ƳŀŘŜ ŦǊƻƳ ŎƭŀǎǎŜǎ ǘƘŀǘΥ

¶ ¢ŜƭƭΣ ŘƻƴΩǘ ŀǎƪ

¶ Have one distinct responsibility

¶ Can be composed from the outside

¶ Expose client-specific interfaces

¶ Use contract tests for shared abstractions

CODEMANSHIP | TDD |102

14. TEST DOUBLES

Summary:

¶ ¢Ŝǎǘ ŘƻǳōƭŜǎ ŀǊŜ ƻōƧŜŎǘǎ ǳǎŜŘ ƛƴ ǘŜǎǘǎ ǘƘŀǘ ŀǊŜƴΩǘ ǘƘŜ ǊŜŀƭ
thing

¶ They can help us write fast-running tests by decoupling
from external dependencies like databases and web
services

¶ They can help uǎ ŘŜŦŜǊ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŘŜǘŀƛƭǎ ōȅ άŦŀƪƛƴƎ ƛǘ
Ψǘƛƭ ǿŜ ƳŀƪŜ ƛǘέ

¶ They can help make tests that depend on changing or
random data repeatable

¶ Stubs are test doubles that provide test data

¶ Mocks are test doubles that allow us to test object
interactions, and helǇ ǳǎ ǘƻ ŘŜǎƛƎƴ ƻōƧŜŎǘǎ ǘƘŀǘ ¢ŜƭƭΣ 5ƻƴΩǘ
Ask

¶ Over-ǊŜƭƛŀƴŎŜ ƻƴ ƳƻŎƪ ƻōƧŜŎǘ ŦǊŀƳŜǿƻǊƪǎ Ŏŀƴ άōŀƪŜ ƛƴέ ŀ
tightly-coupled design

¶ Dummies are test doubles that allow the test to compile
ŀƴŘ ǊǳƴΣ ōǳǘ ŀǊŜƴΩǘ ǳǎŜŘ

¶ Test doubles should implement interfaces that we control,
to protect our application code from external
dependencies

¶ Whether a test double is a stub, a mock or a dummy
ŘŜǇŜƴŘǎ ƻƴ Ƙƻǿ ƛǘΩǎ ǳǎŜŘΣ ƴƻǘ Ƙƻǿ ƛǘΩǎ ƛƳǇƭŜƳŜƴǘŜŘ

¢ƘŜǊŜ ŀǊŜ ƻŦǘŜƴ ǘƛƳŜǎΣ ǿƘŜƴ ǿŜΩǊŜ ǿǊƛǘƛƴƎ ŀǳǘƻƳŀǘŜŘ ǘŜǎǘǎΣ ǘƘŀǘ
we need to use an object that ς for a number of possible reasons ς
is not the real thing.

It could be:

CODEMANSHIP | TDD |103

¶ For performance reasons (e.g., connecting to an external
service would not be desirable in a suite of fast-running
unit tests.)

¶ For cost reasons (e.g., requiring Oracle licenses to use a
database in a test.)

¶ Because the type of object ǿŜ ǿŀƴǘ ǘƻ ǳǎŜ ŘƻŜǎƴΩǘ ŜǾŜƴ
ŜȄƛǎǘ ȅŜǘ όάCŀƪŜ ƛǘ Ψǘƛƭ ȅƻǳ ƳŀƪŜ ƛǘέύΦ

¶ Because ǿŜ ƪƴƻǿ ƛǘ ǿƻƴΩǘ ōŜ ǳǎŜŘ ƛƴ ƻǳǊ ǘŜǎǘΦ

¶ Because the object in question can only exist running inside
a container process, like the HTTP context of a web server.

¶ To make tests repeatable when object behaviour might
ǾŀǊȅ όŜΦƎΦΣ ƎŜǘǘƛƴƎ ǘƻŘŀȅΩǎ ŘŀǘŜύ

Test doubles come in several flavours:

¶ Stubs ς objects that supply test data

¶ Mocks ς objects that require interactions to happen

¶ Fakes ς objects that exhibit all the behaviour of the real
thing (e.g., an in-memory relational database)

¶ Dummies ς ƻōƧŜŎǘǎ ǘƘŀǘ ŀǊŜƴΩǘ ǳǎŜŘΣ ōǳǘ ƴŜŜŘ ǘƻ ōŜ ǘƘŜǊŜ
to compile and run the test

¶ Spies ς objects that remember when their methods are
called, so we can query that in our tests

Lƴ ¢55Σ ǎǘǳōǎΣ ƳƻŎƪǎ ŀƴŘ ŘǳƳƳƛŜǎ ŎƻƳŜ ǳǇ Ƴƻǎǘ ƻŦǘŜƴΦ ²ŜΩƭƭ
explore their use in this chapter.

STUBS

A stub is a test double that presents an expected interface to our
class under test, and has a test-specific implementation that
ǊŜǘǳǊƴǎ Řŀǘŀ ǘƘŀǘ ǿƛƭƭ ōŜ ǳǎŜŘ ƛƴ ƻǳǊ ǘŜǎǘΦ aƻǊŜ ǎƛƳǇƭȅΣ ŀ ǎǘǳōΩǎ Ƨƻō
ƛǎ ǘƻ ǇǊƻǾƛŘŜ ǘŜǎǘ ŘŀǘŀΦ Lƴ ǘƘŀǘ ǎŜƴǎŜΣ ŀ ǎǘǳōΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ǇŀǊǘ
of the set-up for a test.

CODEMANSHIP | TDD |104

public class TradeQuoteTests {

 @Test
 public void tradePriceIsStockPriceTimesQuantity() {

 StockPricer pricer = new StockPricerStub(10);

 TradeQuote trade = new TradeQuote(pricer);

 assertEquals (1000, trade.quote(ñXò , 100), 0);

 }

}

In this test, we want to check that a quote for a stock market trade
is calculated correctly. Our TradeQuote object will get a price from
a StockPricer. When the software is in production, an
implementation of the StockPricer interface would connect to an
external web service. For the purposes of our test, though, we write
our own test-specific implementation that returns a price of 10.

Note the use of dependency injection here to plug the StockPricer
stub into the TradeQuote object (this is a great illustration of the
kind of flexibility we get by composing objects from the outside).

Internally, TradeQuote depends only on the interface, and knows
nothing about the stub.

public class TradeQuote {

 private final StockPricer pricer ;

 public TradeQuote(StockPricer pricer) {
 this . pricer = pricer;
 }

 public double quote(String stock, int quantity) {
 return pricer .getPrice(stock) * quantity;
 }
}

Notice also how I passed the test data value into the constructor of
my stub, rather than hardcodinƎ ƛǘ ƛƴǘƻ ǘƘŜ ǎǘǳōΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΦ
LΩǾŜ ŘƻƴŜ ǘƘƛǎ ŦƻǊ ǘǿƻ ǊŜŀǎƻƴǎΤ ŦƛǊǎǘƭȅΣ ƛǘ ƳŜŀƴǎ L Ŏŀƴ ǎǇŜŎƛŦȅ ǘƘŜ
value in the actual test code, making it easier to understand.
Secondly, I can reuse this stub implementation with different
values, meaning less code duplication.

CODEMANSHIP | TDD |105

¢ƘŜ ǎǘǳōΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ǎƛƳǇƭȅΥ

public class StockPricerStub implements StockPricer {

 private final double price ;

 public StockPricerStub(double price) {

 this . price = price;

 }

 @Override
 public double getPrice(String stock) {

 return price ;

 }

}

Sometimes, instead of returning test data, we might want a stub to
throw an exception to test how our object handles it.

 @Test(expected=InvalidTradeException. class)
 public void tradeNotValidIfStockNotFound()

throws InvalidTradeException {
 StockPricer pricer = new StockNotFoundStockPricerStub();
 TradeQuote trade = new TradeQuote(pricer);
 assertEquals (1000, trade.quote(ñXò , 100), 0);
 }

When the stub throws a StockNotFoundException, TradeQuote
should catch that and throw an InvalidTradeException.

public class StockNotFoundStockPricerStub implements
StockPricer {

 @Override
 public double getPrice(String stock)

throws StockNotFoundException {
 throw new StockNotFoundException(stock);
 }
}

Lƴ ōƻǘƘ ǘŜǎǘǎΣ L ǳǎŜŘ ŀ ǎǘƻŎƪ ǎȅƳōƻƭ ά·έΦ Lǘ ŘƻŜǎƴΩǘ ƳŀǘǘŜǊ ǿƘŀǘ ǎǘƻŎƪ
symbol we use, as our stubs will return the data we want them to
regardless.

Two important things to remember when using stubs:

1. Do not test the stub! Our goals here is to test the object
that uses the data the stub provides

CODEMANSHIP | TDD |106

2. Stubs are test code

Stubs can also be used to fix test data that would usually change
when using the real object - ƭƛƪŜ ŀ ǇŜǊǎƻƴΩǎ ŀƎŜ ς making the test
repeatable.

@Test
public void driverUnder25PaysFivePercentPremium() {
 Motorist motorist = new Motorist("01/01/1900" ,

Gender. MALE,
null ,
new AgeCalculatorStub(24));

 assertEquals (0.05, motorist.calculateAgePremium(), 0);
}

CODEMANSHIP | TDD |107

public class Motorist {

 private final String dateOfBirth ;
 private final Gender gender ;
 private final DriversLicense license ;
 private final AgeCalculator ageCalculator ;

 public Motorist(String dateOfBirth,
 Gender gender,
 DriversLicense license,
 AgeCalculator ageCalculator) {
 this . dateOfBirth = dateOfBirth;
 this . gender = gender;
 this . license = license;
 this . ageCalculator = ageCalculator;
 }

 private double calculateAgePremium() {
 int age = ageCalculator .calculateAge(dateOfBirth);
 double agePremium;
 if (age < 25){
 agePremium = 0.05;
 } else
 if (age > 70){
 agePremium = 0.04;
 } else {
 agePremium = 0.03;
 }
 return agePremium;
 }

Lƴ ƻǳǊ ǘŜǎǘΣ ƛǘ ƳŀƪŜǎ ƴƻ ŘƛŦŦŜǊŜƴŎŜ ǿƘŀǘ ǿŜ ǎǇŜŎƛŦȅ ǘƘŜ ƳƻǘƻǊƛǎǘΩǎ
date of birth to be. His age wiƭƭ ŀƭǿŀȅǎ ōŜ άŎŀƭŎǳƭŀǘŜŘέ ŀǎ нпΦ

MOCK OBJECTS

aƻŎƪǎ ƻŦǘŜƴ ƎŜǘ ƳƛȄŜŘ ǳǇ ǿƛǘƘ ǎǘǳōǎ όŀƴŘ ƛǘ ŘƻŜǎƴΩǘ ƘŜƭǇ ǘƘŀǘ Ƴŀƴȅ
developers use mock object frameworks to create stubs). The
terms are routinely used interchangeably, even by renowned
experts in TDD.

But, strƛŎǘƭȅ ǎǇŜŀƪƛƴƎΣ ŀ ƳƻŎƪ ƛǎƴΩǘ ŀ ǎǘǳōΦ ¢ƘŜ ǇǳǊǇƻǎŜ ƻŦ ŀ ǎǘǳō ƛǎ
to provide test data. The purpose of a mock is to allow us to write
tests that will fail when an interaction between our object under

CODEMANSHIP | TDD |108

ǘŜǎǘ ŀƴŘ ƻƴŜ ƻŦ ƛǘǎ ŎƻƭƭŀōƻǊŀǘƻǊǎ ŘƻŜǎƴΩǘ ƘŀǇǇŜƴ ƛƴ ǘƘŜ ǿŀȅ we say
it should.

 @Test
 public void tellsAuditToLogQuote() throws Exception {
 int quantity = 100;
 String stock = "X" ;
 StockPricer pricer = new StockPricerStub(10);
 Audit audit = mock(Audit. class);
 double quotedPrice =

new TradeQuote(pricer, audit)

.quote(stock, quantity);
 verify (audit).log(stock , quantity , quotedPrice);
 }

Suppose we get a new requirement for our TradeQuote to log each
quote generated for audit purposes.

²Ŝ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ƘŀǾŜ ǘƻ ƛƴǎǇŜŎǘ ǘƘŜ ŀǳŘƛǘ ƭƻƎ ǘƻ ŦƛƴŘ ƻǳǘ ƛŦ
TradeQuote called the log() method. And if logs are written to a file
ƻǊ ŀ ŘŀǘŀōŀǎŜΣ ǿŜ ŘŜŦƛƴƛǘŜƭȅ ŘƻƴΩǘ ǿŀƴǘ TradeQuote to talk to the
real thing in our fast-running unit test.

We can mock Audit ς in this example using Mockito
(www.mockito.org) ς and then verify that the interaction took
place. Before we write the code to pass this interaction test, we run
the test to see that our mock assertion (i.e., verify) fails.

CODEMANSHIP | TDD |109

To pass the test, TradeQuote needs to call log() with the right
parameter values.

 public double quote(String stock, int quantity)
throws InvalidTradeException {

 try {
 double quotedPrice =

pricer .getPrice(stock) * quantity;
 audit .log(stock, quantity, quotedPrice);
 return quotedPrice;
 } catch (StockNotFoundException e) {
 throw new InvalidTradeException(e);
 }
 }

Note that, although we used the StockPricer ǎǘǳōΣ ǘƘƛǎ ǘŜǎǘ ƛǎƴΩǘ
ŀōƻǳǘ ǘƘŜ ŎŀƭŎǳƭŀǘƛƻƴ ƻŦ ǘƘŜ ǉǳƻǘŜΦ LǘΩǎ ŀōƻǳǘ ǿƘŜǘƘŜǊ ƻǊ ƴƻǘ
TradeQuote tells Audit to log the quote.

¢Ƙƛƴƪ ōŀŎƪ ǘƻ ǘƘŜ ŎƘŀǇǘŜǊ ƻƴ ŘŜǎƛƎƴ ǇǊƛƴŎƛǇƭŜǎΣ ŀƴŘ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪΦ
Using traditional test assertions, we would have needed to provide
a way for our test to query the internal state of Audit to check if the
log had been written. This breaks encapsulation unnecessarily.

CODEMANSHIP | TDD |110

Logging ǉǳƻǘŜǎ ƛǎƴΩǘ TradeQuoteΩǎ ƧƻōΦ Telling Audit to log the
quote is.

This is why mock objects were invented: to allow us to more easily
test-ŘǊƛǾŜ ŘŜǎƛƎƴǎ ƳŀŘŜ ǳǇ ƻŦ ƻōƧŜŎǘǎ ǘƘŀǘ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪΦ In this
ǎŜƴǎŜΣ ƳƻŎƪǎ ŀǊŜ ƴƻǘ ǊŜŀƭƭȅ ŀ ǘŜǎǘƛƴƎ ǘƻƻƭΦ ¢ƘŜȅΩǊŜ ŀ ŘŜǎƛƎƴ ǘƻƻƭΣ
helping us to test-driven designs that are more loosely coupled.

ABUSING MOCK OBJECT FRAMEWORKS

Originally intended as a design tool for TDD, mock object
frameworks can help us to test-drive objects that are loosely
ŎƻǳǇƭŜŘ ŀƴŘ ǘƘŀǘ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪΦ .ǳǘ ǘƘŜȅ Ŏŀƴ ōŜ Ŝŀǎƛƭȅ ŀōǳǎŜŘΣ
ending up with code that is more difficult to change.

Many developers rely on mocks as a crutch for writing tests for
poorly designed code. When your designs look like this:

Then things can get a bit sticky in our test code. The problem is that
mocking frameworks expose internal details about which methods
should get called. Just as surely as lots of getters break object
encapsulation, so too does lots of mocking code.

If we wanted to refactor this design to make it more loosely
coupled:

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

getLicense()

getDateOfBirth()

getGender()

getDateIssued()

getPoints()

CODEMANSHIP | TDD |111

It would break a whole bunch of tests that explicitly rely on there
being getters instead.

¢ƘŜ ǿƘƻƭŜ ǇǳǊǇƻǎŜ ƻŦ ƳƻŎƪǎ ƛǎ ǘƻ ƘŜƭǇ ǳǎ ŎƻƳŜ ǘƻ ŀ ¢ŜƭƭΣ 5ƻƴΩǘ !ǎƪ
design in the first place. Abuse and over-reliance on mock objects
can effectively bake in a bad design.

DUMMIES

Blink and you might have missed the fact that we already used
dummy objects in some of the tests in this chapter.

! ŘǳƳƳȅ ƛǎ ŀƴ ƻōƧŜŎǘ ǘƘŀǘ ǿƻƴΩǘ ōŜ ǳǎŜŘ ƛƴ ƻǳǊ ǘŜǎǘ ς of, if it is used,
ǿŜ ŘƻƴΩǘ ŎŀǊŜ ŀōƻǳǘ ƛǘ ς but that has to be included so that we can
compile and run the test.

@Test
public void driverUnder25PaysFivePercentPremium() {
 Motorist motorist = new Motorist("01/01/1900" ,

Gender. MALE,
null ,
new AgeCalculatorStub(24));

 assertEquals (0.05,
motorist.calculateAgePremium(), 0);

}

In this test, notice how we pass in a null value for license to the
Motorist constructor. We have to pass in something, or the test
ŎƻŘŜ ǿƻƴΩǘ ŎƻƳǇƛƭŜΦ .ǳǘ ǘƘƛǎ ǘŜǎǘ ŘƻŜǎƴΩǘ ƛƴǾƻƭǾŜ ŀ DriversLicense,
so null is the simplest thing we can use.

Lǘ ƳƛƎƘǘ ōŜ ǘƘŀǘ ǘƘŜ ŎƻŘŜ ǿŜΩǊŜ ǘŜǎǘƛƴƎ Ŏŀƭƭǎ ƳŜǘƘƻŘǎ ƻƴ ŀ ŘǳƳƳȅ
ς ōǳǘ ǘƘƻǎŜ ƳŜǘƘƻŘǎ ŘƻƴΩǘ ǊŜǘǳǊƴ ŀƴȅ Řŀǘŀ όǎƻ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ

: InsuranceQuote : Motorist : License

calculatePremium(carValue)

calculatePremium(carValue)

calculatePremium(carValue)

CODEMANSHIP | TDD |112

use a stub) ς in which case we can use the Null Object design
pattern.

A Null Object is an empty implementation of an interface that we
Ŏŀƴ Ŏŀƭƭ ƳŜǘƘƻŘǎ ƻƴΣ ōǳǘ ǘƘƻǎŜ ƳŜǘƘƻŘǎ ŘƻƴΩǘ Řƻ ŀƴȅǘƘƛƴƎΦ

A Null Object implementation for DriversLicense would require a
pure interface, with a dummy implementation that looks like this:

public interface License {

 public abstract void addPoints(int points);

}

public class LicenseDummy implements License {

 @Override

 public void addPoints(int points) {

 }

}

When our code under test invokes addPoints() on our dummy
license, nothing happens. But if the license parameter value was
ŀŎǘǳŀƭƭȅ ƴǳƭƭΣ ǿŜΩŘ ƎŜǘ ŀƴ ǳƴƘŀƴŘƭŜŘ ŜȄŎŜǇǘƛƻƴΦ

Another way of creating Null Objects is using a mock objects
framework.

@Test
public void tradePriceIsStockPriceTimesQuantity() {
 String stock = "INTEL" ;
 StockPricer pricer = new StockPricerStub(10);
 TradeQuote trade =

new TradeQuote(pricer, mock(Audit. class));
 assertEquals (1000, trade.quote(stock , 100), 0);
}

In this example, we use a mock Audit object as a dummy. The test
ƛǎƴΩǘ ŀōƻǳǘ ǘƘŜ ƛƴǘŜǊŀŎǘƛƻƴ ǿƛǘƘ ǘƘŜ ƳƻŎƪΦ LǘΩǎ ŀōƻǳǘ ǘƘŜ ŎŀƭŎǳƭŀǘƛƻƴ
of the quote. But we know that Audit.log() will be invoked, so
passing in a mock object takes care of that. Mockito will generate

CODEMANSHIP | TDD |113

an implementation of the Audit ƛƴǘŜǊŦŀŎŜ ǘƘŀǘΩǎ ŜŦŦŜŎǘƛǾŜƭȅ ŀ bǳƭƭ
Object.

WHOSE INTERFACE IS IT ANYWAY?

Imagine, in our example, that our external stock price provider has
created a convenient Java API for using their service.

public interface AcmeStocks {

 public double price(String stockSymbol);

}

Why not use implementations of this to create our test doubles?

If we did, this could cause problems later on. First of all, the design
ƻŦ ǘƘƛǎ ƛƴǘŜǊŦŀŎŜ ƛǎ ōŜȅƻƴŘ ƻǳǊ ŎƻƴǘǊƻƭΦ ²ŜΩƭƭ ƴŜŜŘ ǘƻ ƪŜŜǇ ƻǳǊ !ŎƳŜ
Stocks API up-to-date, because it connects to a live web service. So
ŜǾŜǊȅ ǘƛƳŜ !ŎƳŜ {ǘƻŎƪǎ ŎƘŀƴƎŜ ƻǳǊ !tLΣ ǿŜΩƭƭ ƘŀǾŜ ǘƻ ŎƘŀƴƎŜ ƻǳǊ
code that depends on it.

Also, what happens if Acme Stocks go bust? Or if we find a provider
who offer better terms and want to switch? If our TradeQuote logic
depends directly on their interface, we may have to rewrite all that
code.

LǘΩǎ ōŜǎǘ ǘƻ ǇǊƻǘŜŎǘ ƻǳǊ ŎƻŘŜ ŦǊƻƳ ŘƛǊŜŎǘ ŜȄǘŜǊƴŀƭ ŘŜǇŜƴŘŜƴŎƛŜǎ ƭƛƪŜ
this, by declaring our own interfaces, that we control, that will
allow us to swap implementations without rewriting big chunks of
our application logic.

¢ǊǳŜ ǘƘŀǘΣ ǎƻƳŜǿƘŜǊŜ ƛƴ ƻǳǊ ŎƻŘŜΣ ǿŜΩƭƭ ƘŀǾŜ ǘƻ ƭƛǾŜ ǿƛǘƘ ǘƘŜ ŘƛǊŜŎǘ
dependency. But aim to isolate that dependency, keeping it as
small as possible, and in one easily-ǎǿŀǇǇŜŘ ǇƭŀŎŜŘΦ ²ŜΩƭƭ ŘƛǎŎǳǎǎ
test-driving integration code in the next chapter.

CODEMANSHIP | TDD |114

MOCKS VS. STUBS VS. DUMMIES

What distinguishes a mock from a stub from a dummy is not how
these test doubles are implemented, but how they are used in our
tests.

We can create stubs and dummies using mock object frameworks.
E.g.

@Test
public void tradePriceIsStockPriceTimesQuantity(){
 String stock = "INTEL" ;
 StockPricer pricer = mock(StockPricer. class);
 when(pricer.getPrice(stock)).thenReturn(10.0);
 TradeQuote trade =

new TradeQuote(pricer, mock(Audit. class));
 assertEquals (1000, trade.quote(stock , 100), 0);
}

We created pricer using the mock() method, but set it up to return
ǘŜǎǘ ŘŀǘŀΦ ¢Ƙƛǎ ǘŜǎǘ ƛǎƴΩǘ ŀōƻǳǘ ǘƘŜ ƛƴǘŜǊŀŎǘƛƻƴ ǿƛǘƘ ǘƘŜ StockPricer,
ƛǘΩǎ ŀōƻǳǘ ǘƘŜ ŎŀƭŎǳƭŀǘƛƻƴ ƻŦ ǘƘŜ ǉǳƻǘŜΦ Therefore pricer is a stub,
not a mock.

And, in the same test, we use mock() to create a dummy
implementation of AuditΦ !ƎŀƛƴΣ ƛǘΩǎ ƴƻǘ ŀ ƳƻŎƪ ƛŦ ƻǳǊ ƛƴǘŜƴǘƛƻƴ ƛǎƴΩǘ
to test that methods on the Audit object are invoked.

Finally, we can create mock objects without using mocking
frameworks. At their essence, mock objects are just
implementations of interfaces that remember when their methods
are invoked (and with what parameter values), allowing us to test
the interactions between objects in our designs.

There are many ways this could be achieved in code. A simple way
in Java might be to use anonymous classes to implement interfaces,
with method implementations that record interactions.

(Indeed, according to a pioneer of mock objects, Steve Freeman,
this is how they started.)

CODEMANSHIP | TDD |115

public class LibraryTests {

 private boolean awardPriorityPointsInvoked ;
 private boolean registerCopyInvoked ;

 @Test
 public void tellsTitleToRegisterCopy() {
 registerCopyInvoked = false ;
 Member member = new Member(){

public void awardPriorityPoints(int points){}
 };
 Title title = new Title(){
 public void registerCopy(){
 registerCopyInvoked = true ;
 }
 };
 new Library().donate(title, member);
 assertTrue ("title.registerCopy() was not invoked" ,

registerCopyInvoked);
 }

 @Test
 public void tellsMemberToAwardTenPriorityPoints() {
 awardPriorityPointsInvoked = false ;
 Member member = new Member(){
 public void awardPriorityPoints(int points){
 awardPriorityPointsInvoked = (points == 10);
 }
 };
 Title title = new Title(){ public void registerCopy(){}};
 new Library().donate(title, member);
 assertTrue (

"member.awardPriorityPoints(10) was not invoked" ,
awardPriorityPointsInvoked);

 }

}

{ƻΣ ŀ ŘǳƳƳȅ ƛǎƴΩǘ ŀ ƳƻŎƪ Ƨǳǎǘ ōŜŎŀǳǎŜ ƛǘ ǿŀǎ ŎǊŜŀǘŜŘ ǳǎƛƴƎ ŀ
ƳƻŎƪƛƴƎ ŦǊŀƳŜǿƻǊƪΦ !ƴŘ ȅƻǳ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǳǎŜ ŀ ƳƻŎƪƛƴƎ
framework to create mock objects.

Remember:

1. LŦ ƛǘΩǎ ǘƘŜǊŜ ǘƻ provide ǘŜǎǘ ŘŀǘŀΣ ƛǘΩǎ ŀ stub.
2. LŦ ƛǘΩǎ ƴƻǘ important, but has to be there for the test to
ŎƻƳǇƛƭŜ ŀƴŘ ǊǳƴΣ ƛǘΩǎ ŀ dummy.

3. If ǿŜΩǊŜ ǳǎƛƴƎ ƛǘ ǘƻ ǘŜǎǘ ƻōƧŜŎǘ ƛƴǘŜǊŀŎǘƛƻƴǎΣ ƛǘΩǎ ŀ mock.

CODEMANSHIP | TDD |116

EXERCISE #11

Test-drive some code that compares prices on TVs from three
different sources:

1. Screen Bargains ς an online TV retailer with a web API
2. Acme TV ς a retail chain with an old-fashioned TCP/IP

Electronic Data Interchange interface
3. Televizion ς a mail order company who provide a monthly

price list in an Excel spreadsheet

By specifying a make and model of television, your code will find
the best price and recommend that retailer. If more than one
retailer is offering the same best price, your code will list them all.

Searches also trigger a message to be sent to your ad targeting
engine, detailing the make and model of TV the user is interested
in.

!ǇǇƭȅ ŀƭƭ ƻŦ ǘƘŜ ¢55 ǇǊƛƴŎƛǇƭŜǎ ŀƴŘ ǇǊŀŎǘƛŎŜǎ ǿŜΩǾŜ ƭƻƻƪŜŘ ŀǘ ǎƻ ŦŀǊΣ
and use test doubles appropriately to provide the test data that
would normally come from these 3 external sources, and to test-
drive sending a message to the ad targeting engine. For any objects
ƛƴ ȅƻǳǊ ǘŜǎǘ ǘƘŀǘ ƴŜŜŘ ǘƻ ōŜ ǘƘŜǊŜ ǎƻ ƛǘ ǿƛƭƭ ǊǳƴΣ ōǳǘ ǿƻƴΩǘ ōŜ ǳǎŜŘΣ
use a dummy.

CODEMANSHIP | TDD |117

15. TEST-DRIVING INTEGRATION
CODE

Summary:

¶ Minimise code that needs to be integration tested, so you
have to live with as few slow-running tests as possible

¶ Aim for < 5% integration code (and <5% integration tests)

¶ Isolate and minimise duplication of code that has external
dependencies

¶ Use dependency injection to make integration code easily
swappable

¶ Group fast-running and slow-running tests separately, so
we can easily choose which kind to run

¶ For ultimate flexibility, package integration code separately

Imagine we needed to test-drive some code that calculates average
ratings of video titles supplied by an external website called Rotten
Potatoes.

We could stub the service that fetches the reviews for a title, so we
can test the calculation of the average.

CODEMANSHIP | TDD |118

@Test
public void averageVideoRatingIsTotalDividedBy Count () {
 String name = "Jaws 3D" ;
 Title title = new Title(name);
 Review[] reviews = new Review[2];
 reviews[0] = new Review(name, 3, "");
 reviews[1] = new Review(name, 2, "");
 ReviewsService reviewsService =

new ReviewsServiceStub(reviews);
 VideoStats videoRating =

new VideoStats(title, reviewsService);
 assertEquals (2.5, videoRating.average(), 0);
}

This gives us a fast-running test for the calculation. But at some
ǇƻƛƴǘΣ ǎǳǊŜƭȅΣ ǿŜΩǊŜ Ǝƻing to have to write some code that actually
ŎƻƴƴŜŎǘǎ ǘƻ wƻǘǘŜƴ tƻǘŀǘƻŜǎΩ !tLΣ ǊƛƎƘǘΚ

[ŜǘΩǎ ǿǊƛǘŜ ŀ ǘŜǎǘ ŦƻǊ ŀ ǇǊƻŘǳŎǘƛƻƴ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ
ReviewsService.

public class JSONReviewsServiceTests {

 @Test
 public void reviewsTestServiceHasTwoReviewsOfJaws3D() {
 ReviewsService service =
 new JSONReviewsService(
 "http://localhost:8080/rottenpotatoes/json/reviews/");
 Review[] reviews = service.fetchReviews("Jaws 3D");
 assertEquals (2, reviews . length);
 }

}

When we run this test, it will connect to a test reviews server at the
URL specified and use an HTTP GET to retrieve all reviews for Jaws
3D (of which we know there are two, because we control that test
data.)

In our implementation, a bunch of stuff happens:

CODEMANSHIP | TDD |119

public class JSONReviewsService implements ReviewsService {

 private final String url ;

 public JSONReviewsService(String REST_url) {
 this . url = REST_url;
 }

 @Override
 public Review[] fetchReviews(String titleName) {
 String json = "" ;
 try {
 url += URLEncode.encode(titleName, ñUTF- 8ò) + ñ/getò;
 CloseableHttpClient httpClient =

 HttpClients. createDefault ();

 HttpGet getRequest = new HttpGet(url);
 getRequest.addHeader("accept" , "application/json");
 HttpResponse response;
 response = httpClient.execute(getRequest);

CODEMANSHIP | TDD |120

 if (response.getStatusLine().getStatusCode() != 200) {
 throw new RuntimeException(

"Failed : HTTP error code : "
 + response.getStatusLine().getStatusCode());
 }

 BufferedReader br =

new BufferedReader(new InputStreamReader(
 (response.getEntity().getContent())));

 String output;

 while ((output = br.readLine()) != null) {
 json += output;
 }

 httpClient.close();

 } catch (ClientProtocolEx ception e1) {
 e1.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }

 JSONArray jsonReviews = new JSONArray(json);
 Review[] reviews = new Review[jsonReviews.length()];

 for (int i = 0; i < jsonReviews.length(); i++) {
 JSONObject obj = jsonReviews.getJSONObject(i);
 reviews[i] =
 new Review(obj.optString("title"),
 obj.optInt("rating"),
 obj.optString("comment"));

}
 return reviews;
 }
}

If we write a data service like this for every kind of externally-
provided data in our application, we could wind up with a lot of
code that has to be integration tested, and a large suite of slow-
running tests.

Remember our design principles: is this JSONReviewsService doing
one specific thing?

In fact, it does two things:

1. Fetch the JSON data from the reviews server

CODEMANSHIP | TDD |121

2. Parse the data and build an array of reviews

[ŜǘΩǎ ǊŜŦŀŎǘƻǊ ǘƘƛǎ ŘŜǎƛƎƴ ƛƴǘƻ ǘǿƻ ŎƭŀǎǎŜǎΦ

 @Override
 public Review[] fetchReviews(String titleName) {
 RESTClient client = new RESTClient(url);
 String json = client.get(titleName);

 JSONArray jsonReviews = new JSONArray(json);
 Review[] reviews = new Review[jsonReviews.length()];

 for (int i = 0; i < jsonReviews.length(); i++) {
 JSONObject obj = jsonReviews.getJSONObject(i);
 reviews[i] =
 new Review(obj.optString("title"),
 obj.optIn t("rating"),
 obj.optString("comment"));

}
 return reviews;
 }

NexǘΣ ƭŜǘΩǎ ŎƻƳǇƻǎŜ ƛǘ ŦǊƻƳ ǘƘŜ ƻǳǘǎƛŘŜΣ ǳǎƛƴƎ ŘŜǇŜƴŘŜƴŎȅ ƛƴƧŜŎǘƛƻƴ
to make RESTClient swappable.

public class JSONReviewsService implements ReviewsService {

 private final Client client ;

 public JSONReviewsService(Client client) {
 this . client = client;
 }

 @Override
 public Review[] fetchReviews(String titleName) {
 String json = client .get();

RESTClient ς from which we extracted the Client interface - gets its
own integration test, which has nothing to do with reviews or
ratings.

CODEMANSHIP | TDD |122

public class RESTClientTests {

 @Test
 public void returnsDataFromSpecifiedRESTurl() {
 String url = "http://localhost:8080/resttest/json/test" ;
 RESTClient client = new RESTClient(url);
 assertEquals ("[{ foo : 0 }]" , client.get("foo"));
 }
}

We can easily separate this slow-running integration test from the
fast-running tests, enabling us to choose whether to run only unit
tests, or only integration tests. (Or all tests).

We can reuse RESTClient ŦƻǊ ƻǘƘŜǊ ǎŜǊǾƛŎŜǎΦ {ŀȅΣ ŦƻǊ ŜȄŀƳǇƭŜΣ ǿŜΩǊŜ
asked to pull a release schedule of new video titles from an online
ǊŜǘŀƛƭŜǊΩǎ w9{¢ !tLΦ

We can even go a step further, and package our integration code
(and associated tests) separately, so it can be reused in other
ŘŜǾŜƭƻǇƳŜƴǘ ǇǊƻƧŜŎǘǎΦ όb.Υ ƛƴ ǘƘƛǎ ŎƻƴǘŜȄǘΣ άǇŀŎƪŀƎŜέ ƳŜŀƴǎ ŀ ǳƴƛǘ
of release, like a Java JAR file, or a DLL in .NET.)

CODEMANSHIP | TDD |123

The Videos package only depends directly on the ServiceClient
package, which the REST package extends. This would give us
ultimate flexibility. We could even swap in new Client
implementations without stopping the application.

hǳǊ ǊŜŦŀŎǘƻǊŜŘ ŘŜǎƛƎƴ ƻŦŦŜǊǎ ǳǎ ǘƘǊŜŜ ƻǇǇƻǊǘǳƴƛǘƛŜǎ ǿŜ ŘƛŘƴΩǘ ƘŀǾŜ
before:

¶ We can stub Client when testing JSONReviewsService, and
test that the JSON data is parsed correctly by itself

 @Test
 public void fetchesReviewsForTitle() {
 String reviewsJson = "[" +
 "{title : \ "Jaws 3D \ ", rating : 3, comment: \ " \ "}," +
 "{title : \ "Jaws 3D \ ", rating : 3, comment: \ " \ "}," +
 "]" ;
 ReviewsService service =
 new JSONReviewsService(

new ClientStub(reviewsJson));
 Review[] reviews = service.fetchReviews("Jaws 3D");
 assertEquals (2, reviews. length);
 }

¶ We can reuse RESTClient for other kinds of data that needs
to be retrieved from a REST service. All it needs is the URL
and parameter values.

¶ We can substitute a different client implementation
dynamically, which can help us if there are multiple data
ǎƻǳǊŎŜǎΣ ƻǊ ƛŦ ǿŜΩǊŜ ƭƻŀŘ-balancing across multiple REST
servers.

Videos

VideoStats
<< interface >>
ReviewsService

JSONReviewsService

ServiceClient

<< interface >>
Client

REST

RESTClient

CODEMANSHIP | TDD |124

In practice, code that has direct external dependencies can be
greatly minimised by following the design principles of minimising
duplication, giving methods and classes a single responsibility, and
composing objects from the outside. I typically find integration
code need only make up less than 5% of the code in an application,
and therefore less than 5% of the tests.

We can do the maths; integration code is ς by its very nature - at
the edges of our system, meaning that changes to inner code (UI
ƭƻƎƛŎΣ ŎƻƴǘǊƻƭƭŜǊǎΣ ōǳǎƛƴŜǎǎ ƭƻƎƛŎΣ ŜǘŎύ ǳǎǳŀƭƭȅ ŎŀƴΩǘ ōǊŜŀƪ ƛǘΦ !ƴŘΣ ŀǎ
ƛǘΩǎ ƭŜǎǎ ǘƘŀƴ р҈ ƻŦ ǘƘŜ ǘƻǘŀƭ ŎƻŘŜΣ ǿŜ ƳƛƎƘǘ ŜȄǇŜŎǘ ǘƻ ōŜ Ŏhanging
it less than 5% of the time. Which means we need to run our
integration tests 20x less often than our unit tests.

LŦ ǿŜΩǊŜ ǿŜƭƭ-organised about it, slow-running integration tests
ŘƻƴΩǘ ƘŀǾŜ ǘƻ ōŜ ŀ ōǳǊŘŜƴΦ

¢ƘŜǊŜΩǎ ƳƻǊŜ ǊŜŦŀŎǘƻǊƛƴƎ ǘƘŀǘ ƴŜŜŘǎ ōŜ Řƻƴe to improve this code.
²ŜΩǾŜ ƳŀŘŜ ƛǘ ŜŀǎƛŜǊ ōȅ ƳƛƴƛƳƛǎƛƴƎ ŀƴŘ ƛǎƻƭŀǘƛƴƎ ǘƘŜ ƛƴǘŜƎǊŀǘƛƻƴ
code.

EXERCISE #12

/ƻƴǘƛƴǳƛƴƎ ǿƛǘƘ ǘƘŜ ǎŀƳŜ ŎƻŘŜ ȅƻǳ ǿǊƛǘŜ ŦƻǊ 9ȄŜǊŎƛǎŜ Імм όά¢Ŝǎǘ-
drive some code that compares prices on TVs from three different
ǎƻǳǊŎŜǎέύΣ ǊƛƎ ǳǇ test versions of those 3 data sources (a web
service, a simple TCP/IP daemon, and an Excel spreadsheet). Set-up
a local file to store audit logs.

Test-drive implementations that will get data from or write data to
these external sources. Try as much as possible to isolate the
external dependencies and minimise the code that really needs to
be integration tested.

CODEMANSHIP | TDD |125

16. TDD WITH THE CUSTOMER

Summary:

¶ Examples help us to pin down the precise meaning of
requirements

¶ We can extract data from customer examples to use in
tests

¶ A user story is a placeholder to have a conversation with
the customer where we agree tests that will act as our
requirements specification

¶ Writing tests is a skilled job, and the customer will probably
require our assistance to produce effective tests

¶ ¢ƘŜ ŎǳǎǘƻƳŜǊΩǎ ǘŜǎǘǎ Ƴǳǎǘ ŘŜŦƛƴŜ ŜǾŜǊȅ ƛƴǇǳǘ ǎŎŜƴŀǊƛƻ ǘƘŜ
software will need to handle

¶ Negotiate feature scope and complexity by negotiating
tests

¶ If you realise test cases have been missed, go back to the
customer to agree new tests. You are not the customer

¶ ! ŦŜŀǘǳǊŜ ƛǎƴΩǘ άŘƻƴŜέ ǳƴǘƛƭ ƛǘ ǇŀǎǎŜǎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǘŜǎǘǎ

¶ Work in vertical slices, delivering working software that
ǇŀǎǎŜǎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǘŜǎǘǎ

¶ Making customer tests machine-executable guarantees
absolute precision

¶ Tools like FitNesse allow customers to provide test data we
can use in executable specifications

¶ Once we have a failing customer test, we can implement a
design that will pass the test

¶ /ƭƻǎŜ ŎǳǎǘƻƳŜǊ ƛƴǾƻƭǾŜƳŜƴǘ ƛǎ ǾƛǘŀƭΦ ¢ƘŜǊŜΩǎ ƴƻ
workaround or substitute that works anywhere near as
well.

CODEMANSHIP | TDD |126

A common misconception about TDD is that it focuses on unit tests
and the internal design of our software. In fact, the tests that drive
our designs can be written at any level of design. They could be
system tests that drive the software through an external interface,
integration tests that drive the interactions between systems,
services or components, or unit tests that drive the design of our
classes.

An increasingly popular application of using tests as specifications
helps us to communicate with our customers, building a precise
shared understanding of what is required from the software.

SPECIFICATION BY EXAMPLE

Decades of experience working with customers to understand their
requirements has taught us that the best way to pin down exactly
what the customer wants is to use examples.

Lƴ ǊŜŀƭ ƭƛŦŜΣ ǎƻƳŜƻƴŜ ƳƛƎƘǘ ǎǇŜŎƛŦȅ ǘƘŀǘ ǘƘŜȅ ƭƛƪŜ ǘƘŜƛǊ ŎƻŦŦŜŜ άƘƻǘέ
ŀƴŘ άǎǿŜŜǘέΦ .ǳǘ Ƙƻǿ Ƙƻǘ ƛǎ άƘƻǘέΣ ŀƴŘ Ƙƻǿ ǎǿŜŜǘ ƛǎ άǎǿŜŜǘέΚ

We could ask the customer to specify the precise temperature they
like their coffee served at (e.g., 90°C), and the exact sugar content

άƘƻǘέ

άǎǿŜŜǘέ

CODEMANSHIP | TDD |127

ǘƘŜȅ ŘŜǎƛǊŜ όплƎκ[ύΦ .ǳǘΣ ŎƘŀƴŎŜǎ ŀǊŜΣ ǘƘŜȅ ŘƻƴΩǘ ƪƴƻǿ ǿƘŀǘ ǘƘŜ
precise temperature is, or exactly how many grams of sugar per
litre. As expert baristas, we may think in those terms: our customer
probŀōƭȅ ŘƻŜǎƴΩǘΦ

To understand how our customer really likes their coffee, we could
ask them to give us an example cup that they believe is just right,
and extract data from that example about the precise temperature
and sugar content.

To flesh out our understanding of how customers want their coffee,
ǿŜ ŎƻǳƭŘ ŀǎƪ ŦƻǊ ƳƻǊŜ ŜȄŀƳǇƭŜǎΦ aŀȅōŜ WŀŎƪ ƭƛƪŜǎ Ƙƛǎ ŎƻŦŦŜŜ άƘƻǘ
ŀƴŘ ǎǿŜŜǘέΣ ōǳǘ WŀƴŜ ƭƛƪŜǎ ƛǘ άǿƘƛǘŜ ǿƛǘƘ ƴƻ ǎǳƎŀǊέ and Rajesh likes
ƛǘ άƳƛƭƪȅ ǿƛǘƘ ƻƴŜ ƭǳƳǇέΦ 9ȄŀŎǘƭȅ Ƙƻǿ ƳǳŎƘ Ƴƛƭƪ Řƻ ǿŜ Ǉǳǘ ƛƴ ǘƻ
make the cofŦŜŜ άǿƘƛǘŜέΚ Iƻǿ ƳǳŎƘ ƳƻǊŜ ǘƻ ƳŀƪŜ ƛǘ άƳƛƭƪȅέΚ Iƻǿ
ƳǳŎƘ ǎǳƎŀǊ ƛǎ ǘƘŜǊŜ ƛƴ άƻƴŜ ƭǳƳǇέΚ !ƴŘ ǎƻ ƻƴΦ

We can apply the same technique to pinning down software
requirements. A customer may ask that:

ά²ƘŜƴ ŀ ƳƻǾƛŜ ǘƛǘƭŜ ƛǎ ŀŘŘŜŘ ǘƻ ǘƘŜ ƭƛōǊŀǊȅΣ ƳŜƳōŜǊǎ ǿƘƻ ŜȄǇǊŜǎsed
ŀƴ ƛƴǘŜǊŜǎǘ ƛƴ ōƻǊǊƻǿƛƴƎ ƛǘ ŀǊŜ ŀƭŜǊǘŜŘέ

Which movie title? Who expressed an interest in borrowing it? How
Řƻ ǿŜ ƪƴƻǿ ǘƘŜȅΩǊŜ ƛƴǘŜǊŜǎǘŜŘΚ

άƘƻǘέ Ґ 90°C

άǎǿŜŜǘέ Ґ плƎκ[ǎǳƎŀǊ

CODEMANSHIP | TDD |128

By asking the customer to give a specific example, we can remove
the ambiguity from their specification:

ά²ƘŜƴ ƳƻǾie title The Abyss is added to library, members
joepublic, janedoe and fredbloggs are alerted because they
expressed an interest in borrowing titles containing ΨŀōȅǎǎΩ ά

In Extreme Programming, we agree the precise details of user
stories using customer test examples as our specifications.

¢Ƙƛǎ ǊŜǉǳƛǊŜǎ ǳǎ ǘƻ ǿƻǊƪ ǾŜǊȅ ŎƭƻǎŜƭȅ ǿƛǘƘ ƻǳǊ ŎǳǎǘƻƳŜǊǎΦ 5ƻƴΩǘ ƭŜǘ
ǘƘŜƳ ƭŜŀǾŜ ǘƘŜ ǊƻƻƳ ǳƴǘƛƭ ȅƻǳΩǾŜ Ǝƻǘ ŀ ƎƻƻŘ ǎŜǘ ƻŦ ŎǳǎǘƻƳŜǊ ǘŜǎǘǎ
ǘƻ ǿƻǊƪ ŦǊƻƳΦ !ƴŘ ŘƻƴΩǘ ǿǊƛǘŜ ŀ ƭƛƴŜ ƻŦ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŎƻŘŜ ǳƴƭŜǎǎ
you have a failing customer test that requires it.

If you are disciplined and rigorous about it, your customer will soon
ƭŜŀǊƴ ǘƘŀǘ ƛŦ ǘƘŜǊŜ ƛǎƴΩǘ ŀ ǘŜǎǘ ŦƻǊ ƛǘΣ ǘƘŜȅ ŀƛƴΩǘ ƎŜǘǘƛƴƎ ƛǘΦ

USER STORIES ς PLACEHOLDERS FOR CONVERSATIONS

In Extreme Programming, customers request new features and
changes to existing features by writing user stories. A user story is
not, in itself, a requirements specification. It contains just enough
information to uniquely identify the requirement, and serves
purely as a placeholder to remind the developers to have a
conversation with the person who wrote the user story to agree the
details.

CODEMANSHIP | TDD |129

In a test-driven approach, when developers pick up a user story to
work on, the output of this conversation with the customer should
include a set of tests thaǘ ǇǊŜŎƛǎŜƭȅ ǎǇŜŎƛŦȅ ǿƘŀǘΩǎ ǊŜǉǳƛǊŜŘΦ

Customers are usually not software testers, so we must offer them
guidance on this process and help them to identify the test
ǎŎŜƴŀǊƛƻǎ ǿŜΩƭƭ ƴŜŜŘ ǘƻ ŎƻƴǎƛŘŜǊ όŜΦƎΦΣ ƛŦ ǘƘŜȅ ŀǎƪ ŦƻǊ ƴŜǿ ƭƛōǊŀǊȅ
members to choose a password when they join, we might ask the
customer to consider what should happen if the password they
choose is too weak, or what should happen if the password field is
left blank, and so on.)

Teams that expect customers to go away and write the tests
themselves could be waiting a long time. This is a technical skill that
takes a long time to master. If you have dedicated testers on your
team, this is one area where they can prove very useful, helping the
customer to articulate their needs as tests.

In our example, working with the customer, we identify several
tests that the system will need to pass:

CODEMANSHIP | TDD |130

¶ 5ƻƴŀǘƛƴƎ ŀ ƳƻǾƛŜ ǘƛǘƭŜ ǘƘŀǘ ƛǎƴΩǘ ƛƴ ǘƘŜ ƭƛōǊŀǊȅ όǘƘŜ άƘŀǇǇȅ
ǇŀǘƘέύ

¶ Donating multiple copies of the same movie title

¶ Donating a copy of a movie title that the library already has
copies of

¶ 5ƻƴŀǘƛƴƎ ŀ ŎƻǇȅ ƻŦ ŀ άōƭƻŎƪōǳǎǘŜǊέ ƳƻǾƛŜ ǘƛǘƭŜ όƻƴŜ ǘƘŀǘΩǎ
highly sought after by members, earning double the
reward points)

TEST COMPLETENESS & TEST SCOPE

Writing good tests for a user story can require a considerable time
investment from everyone involved, and this can encourage teams
to rush the process. When we miss test cases that our code will
need to handle, we end up with an incomplete specification, and ς
ultimately ς incomplete software.

The software must meaningfully handle every input that its
ƛƴǘŜǊŦŀŎŜ ŀƭƭƻǿǎΣ ǎƻ ǿŜΩƭƭ ƴŜŜŘ ŀǘ ƭŜŀǎǘ ƻƴŜ ǘŜǎǘ ǘƻ ŎƻǾŜǊ ŜǾŜǊȅ
unique possibility.

LŦ ŀ ǳǎŜǊ ǎǘƻǊȅ ƎŜƴŜǊŀǘŜǎ ǘƻƻ Ƴŀƴȅ ǘŜǎǘǎΣ ǘƘŜƴ ǘƘŀǘ ƛǎ ŀ ǎƛƎƴ ǘƘŀǘ ƛǘΩǎ
too complicated. We can break complex stories down into sub-
requirements, as well as limiting test cases by simplifying or
constraining the allowable inputs.

CƻǊ ŜȄŀƳǇƭŜΣ ǿŜ ŎƻǳƭŘ ǎǇƭƛǘ ά5ƻƴŀǘŜ ŀ 5±5έ ƛƴǘƻ ά5ƻƴŀǘŜ ŀ ǎƛƴƎƭŜ
ŎƻǇȅ ƻŦ ŀ 5±5έ ŀƴŘ ά5ƻƴŀǘŜ ƳǳƭǘƛǇƭŜ ŎƻǇƛŜǎ ƻŦ ŀ 5±5έΦ hǊ ǿŜ ŎƻǳƭŘ
decide that users can only donate one copy at a time (since it will
probably be a rare occurrence for them to own multiple copies of
the same movie title.)

What we must never Řƻ ƛǎ ŀƭƭƻǿ ŀƴ ƛƴǇǳǘ ǘƘŀǘ ǘƘŜ ǎƻŦǘǿŀǊŜ ŘƻŜǎƴΩǘ
ƘŀƴŘƭŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ƛŦ ǘƘŜ ƭƛōǊŀǊȅΩǎ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ ŀƭƭƻǿǎ ƳŜƳōŜǊǎ
to donate more than one copy, but the code only registers one
copy.

CODEMANSHIP | TDD |131

Writing tests with the customer is often a negotiation over the
ǎƻŦǘǿŀǊŜΩǎ ǎŎƻǇŜΣ ǎƻ ōŜ ǇǊŜǇŀǊŜŘ ǘƻ ƘŜƭǇ ǘƘŜƳ ƎŜǘ ǿƻǊƪƛƴƎ
software sooner by limiting that scope.

¢I9 ¢9{¢{ ²9 5L5bΩ¢ THINK OF

Try as we might to identify every test case for a user story before
ǿŜ ǎǘŀǊǘ ǿǊƛǘƛƴƎ ŎƻŘŜΣ ǘƘŜ ƳŀȄƛƳ άǘƘŜ ƳŀǇ ƛǎ ƴƻǘ ǘƘŜ ǘŜǊǊŀƛƴέ ǿƛƭƭ
inevitably apply.

While test-driving an implementation of our movie title class, we
ƳƛƎƘǘ ŘƛǎŎƻǾŜǊ ǘƘŀǘ ƛǘΩǎ ǇƻǎǎƛōƭŜ ŦƻǊ ǘhere to be two different
movies with the same name. (For example, there are two movies
ŎŀƭƭŜŘ ά¢ƘŜ ¢ƘƛƴƎέΦύ Iƻǿ Řƻ ǿŜ ŘƛǎŀƳōƛƎǳŀǘŜ ǘƘŜƳ ƛƴ ǘƘŜ ƭƛōǊŀǊȅΚ

We could identify movies by both the name and the year of release
όŜΦƎΦΣ ά¢ƘŜ ¢ƘƛƴƎ όмфунύέ ŀƴŘ ά¢ƘŜ ¢ƘƛƴƎ όнлммύέύΦ

But this is not a change we can make without rethinking our user
interface. As developers, we must be aware that every line of code
ǿŜ ǿǊƛǘŜ ƛƴ ǎƻƳŜ ǿŀȅ ŘŜŦƛƴŜǎ ǘƘŜ ǳǎŜǊΩǎ ŜȄǇŜǊƛŜƴŎŜΦ

If a change to the code will mean a change to the externally visible
ƻǊ ƳŜŀǎǳǊŀōƭŜ ŦǳƴŎǘƛƻƴƛƴƎ ƻŦ ǘƘŜ ǎƻŦǘǿŀǊŜΣ ǘƘŜƴ ǿŜ ǎƘƻǳƭŘƴΩǘ ƳŀƪŜ
ǘƘŀǘ ŘŜŎƛǎƛƻƴ ōȅ ƻǳǊǎŜƭǾŜǎΦ LǘΩǎ ǊŜŀƭƭȅ ŀ ŘŜŎƛǎƛƻƴ ŦƻǊ ǘƘŜ ŎǳǎǘƻƳŜǊΦ

When you hit new test cases during implementation, take them to
the customer and specify the changes with them as part of their
tests for that feature.

59CLbL¢Lhb hC ά5hb9έ

In a test-ŘǊƛǾŜƴ ŀǇǇǊƻŀŎƘ ǘƻ ŘŜǾŜƭƻǇƳŜƴǘΣ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǘŜǎǘǎ
provide us with a clear understanding of what they need from the
software.

CODEMANSHIP | TDD |132

Going back to our coffee example, we can deliver as many cups of
ŎƻŦŦŜŜ ǘƻ ǘƘŜ ŎǳǎǘƻƳŜǊ ŀǎ ǿŜ ƭƛƪŜΣ ōǳǘ ǿŜΩǊŜ ƴƻǘ ŘƻƴŜ ǳƴǘƛƭ ǿŜΩǾŜ
delivered a cup that passes their test (90°C with 10g/L of sugar).

The customer should not accept a delivery until it passes their tests,
and this is why we often refer to them as acceptance tests.

This not only helps us to pin down requirements, clearing up
possibly very costly misunderstandings, it can also help us to
measure our progress much more objectively.

{ƻŦǘǿŀǊŜ ŘŜǾŜƭƻǇŜǊǎ ŀǊŜ ƴƻǘƻǊƛƻǳǎ ŦƻǊ ǎŀȅƛƴƎ ǘƘŜȅ ŀǊŜ άфл҈ ŘƻƴŜέ
when completion of really still a long way off. But when we assess
completeness based on passing customer tests (e.g., it passes 90%
ƻŦ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǘŜǎǘǎύΣ ǿŜ ŦƛƴŘ ǿŜ ƎŜǘ ŀ ƳǳŎƘ ƳƻǊŜ ǊŜŀƭƛǎǘƛŎ
picture of where we are.

D9¢¢LbD ¢h ά5hb9έ Lb VERTICAL SLICES

Some teams make the mistake of working on application layers,
instead of cutting vertical slices through those layers. So by the
release date they may end up writing, say, two thirds of the code,
but not get as far as implementing the user interface, or wiring in
the database, so none of the features can be used.

Other teams make the mistake of going through a specific
ŘŜǾŜƭƻǇƳŜƴǘ ŀŎǘƛǾƛǘȅ ŦƻǊ ŀƭƭ ƻŦ ǘƘŜ ŦŜŀǘǳǊŜǎ όƛΦŜΦΣ άǿŜΩƭƭ ŘŜǎƛƎƴ ƛǘ ŀƭƭΣ

Feature Progress % UI Services Domain DB

Donate a DVD 70% 0% 80% 100% 100%

Borrow a DVD 75% 0% 100% 100% 100%

Join the library 65% 0% 60% 100% 100%

Refer a friend 75% 0% 100% 100% 100%

Review a movie 75% 0% 100% 100% 100%

Search for titles 50% 0% 0% 100% 100%

Report DVD lost or damaged 50% 0% 0% 100% 100%

Reverse a DVD 50% 0% 0% 100% 100%

Spend reward points 75% 0% 100% 100% 100%

Transfer reward points 75% 0% 100% 100% 100%

Total progress 66%

CODEMANSHIP | TDD |133

ǘƘŜƴ ŎƻŘŜ ƛǘ ŀƭƭΣ ǘƘŜƴ ǿŜΩƭƭ ǘŜǎǘ ƛǘ ŀƭƭέύΦ !ƎŀƛƴΣ ǘƘŜ Ǌƛǎƪ if they only
manage to get two thirds of the work done before the release date,
ǘƘŜȅΩƭƭ ƘŀǾŜ ŀ ǿƘƻƭŜ ōǳƴŎƘ ƻŦ ǳƴǘŜǎǘŜŘ ŦŜŀǘǳǊŜǎ ŀǘ ǘƘŜ ŦƛƴƛǎƘ ƭƛƴŜΦ

Driving development with customer tests encourages to organise
ourselves around delivery of working features. If we only manage
to do two-thirds of the work, we should finish up with two-thirds of
the features tested and working.

Cut vertical slices through both your architecture ς UI, services,
domain, database - and your development process ς analysis,
design, coding, testing, release ς to ensure that when you say
ȅƻǳΩǊŜ 66҈ άŘƻƴŜέΣ ȅƻǳ ǊŜŀƭƭȅ ŀǊŜ 66% done, and the customer can
benefit from their investment.

Feature Progress % Analysis Design Coding Testing

Donate a DVD 75% 100% 100% 100% 0%

Borrow a DVD 75% 100% 100% 100% 0%

Join the library 68% 100% 100% 70% 0%

Refer a friend 70% 100% 100% 80% 0%

Review a movie 50% 100% 100% 0% 0%

Search for titles 50% 100% 100% 0% 0%

Report DVD lost or damaged 63% 100% 100% 50% 0%

Reverse a DVD 63% 100% 100% 50% 0%

Spend reward points 75% 100% 100% 100% 0%

Transfer reward points 75% 100% 100% 100% 0%

Total progress 66%

Feature Progress % Total Tests Passed

Donate a DVD 60% 5 3

Borrow a DVD 100% 4 4

Join the library 100% 2 2

Refer a friend 100% 2 2

Review a movie 100% 4 4

Search for titles 0% 4 0

Report DVD lost or damaged 0% 2 0

Reserve a DVD 0% 2 0

Spend reward points 100% 2 2

Transfer reward points 100% 1 1

Total progress 66%

CODEMANSHIP | TDD |134

hǊƎŀƴƛǎŜ ȅƻǳǊ ǘŜŀƳ ŀǊƻǳƴŘ ǘƘŜ ǉǳŜǎǘƛƻƴ άǿƘƻ Řƻ ǿŜ ƴŜŜŘ ǘƻ
ŘŜƭƛǾŜǊ ǘƘƛǎ ǿƻǊƪƛƴƎ ŦŜŀǘǳǊŜΚέ

EXECUTABLE SPECIFICATIONS

²ƘŜƴ ƛǘ ŎƻƳŜǎ ǘƻ ǎǇŜŎƛŦƛŎŀǘƛƻƴǎΣ ǘƘŜǊŜΩǎ άǇǊŜŎƛǎŜέΣ ŀƴŘ ǘƘŜƴ ǘƘŜǊŜΩǎ
άǇǊŜŎƛǎŜ ŜƴƻǳƎƘ ǘƻ ōŜ ŜȄŜŎǳǘŜŘ ōȅ ŀ ŎƻƳǇǳǘŜǊέΦ

To completely eliminate ambiguity from customer specifications,
many development teams write automated tests that check the
software works as desired for each example.

There are many tools available for providing customer example
data to automated tests, but the basic design pattern is always the
same: paramaterised test with customer data.

We write a parameterised test ς much as weΩǾŜ ŘƻƴŜ ǘƘǊƻǳƎƘƻǳǘ
this book ς and then data provided by the customer, captured in a
file format they themselves can edit (e.g., a table in a Wiki page, or
a worksheet in a spreadsheet), is sucked in to provide the
parameter values.

A popular tool is FitNesse (www.fitnesse.org), written by Robert C.
Martin. It enables customers to write their examples on Wiki pages,
providing the example data in tables which can then be extracted
and used by automated tests.

CODEMANSHIP | TDD |135

In this example, the customer has written a general description of
their test in the DƛǾŜƴΧ²ƘŜƴΧ¢ƘŜƴ format prescribed by a variant
of TDD called Behaviour-Driven Development.

The Given clause describes the setup for the test. The When clause
describes the action being tested. And the Then clause describes
the desired outcomes (essentially, the test assertions.)

Underneath that, our customer has provided test data in a table for
a specific example, which we will use in our automated FitNesse
test.

To automate a FitNesse test like this one, we just need to write a
fixture ς a plain old Java object that has the name we assigned to
the table, DonateFixture.

The inputs will be provided through setters on our object with
names that match the columns title and donor. The outputs will be

